These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21839720)

  • 61. The cytology of the adrenal medullary cells with special reference to the storage and secretion of the sympathomimetic amines.
    HILLARP NA; HOKFELT B; NILSON B
    Acta Anat (Basel); 1954; 21(2):155-67. PubMed ID: 13170947
    [No Abstract]   [Full Text] [Related]  

  • 62. Use of intracellular calcium and membrane potential fluorescent indicators in neuroendocrine cells.
    Capponi AM; Lew PD; Schlegel W; Pozzan T
    Methods Enzymol; 1986; 124():116-35. PubMed ID: 3713520
    [No Abstract]   [Full Text] [Related]  

  • 63. Cell communication and the "bystander effect".
    Seymour C; Mothersill C
    Radiat Res; 1999 Apr; 151(4):505. PubMed ID: 10190506
    [No Abstract]   [Full Text] [Related]  

  • 64. The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling.
    Douglas WW; Rubin RP
    J Physiol; 1963 Jul; 167(2):288-310. PubMed ID: 16992152
    [No Abstract]   [Full Text] [Related]  

  • 65. The Role of the Gap Junction Protein Connexin in Adrenal Gland Tumorigenesis.
    Mizdrak M; Ticinovic Kurir T; Mizdrak I; Kumric M; Krnic M; Bozic J
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791437
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Basal and Stress-Induced Network Activity in the Adrenal Medulla
    Lopez Ruiz JR; Ernst SA; Holz RW; Stuenkel EL
    Front Endocrinol (Lausanne); 2022; 13():875865. PubMed ID: 35795145
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A sodium background conductance controls the spiking pattern of mouse adrenal chromaffin cells in situ.
    Milman A; Ventéo S; Bossu JL; Fontanaud P; Monteil A; Lory P; Guérineau NC
    J Physiol; 2021 Mar; 599(6):1855-1883. PubMed ID: 33450050
    [TBL] [Abstract][Full Text] [Related]  

  • 68. What's New in Endocrinology: The Chromaffin Cell.
    Eiden LE; Jiang SZ
    Front Endocrinol (Lausanne); 2018; 9():711. PubMed ID: 30564193
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Inflammatory Signaling in Hypertension: Regulation of Adrenal Catecholamine Biosynthesis.
    Byrne CJ; Khurana S; Kumar A; Tai TC
    Front Endocrinol (Lausanne); 2018; 9():343. PubMed ID: 30013513
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Monitoring the Secretory Behavior of the Rat Adrenal Medulla by High-Performance Liquid Chromatography-Based Catecholamine Assay from Slice Supernatants.
    De Nardi F; Lefort C; Bréard D; Richomme P; Legros C; Guérineau NC
    Front Endocrinol (Lausanne); 2017; 8():248. PubMed ID: 28993760
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Roles of connexins and pannexins in (neuro)endocrine physiology.
    Hodson DJ; Legros C; Desarménien MG; Guérineau NC
    Cell Mol Life Sci; 2015 Aug; 72(15):2911-28. PubMed ID: 26084873
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nicotinic receptor Alpha7 expression during mouse adrenal gland development.
    Gahring LC; Myers E; Palumbos S; Rogers SW
    PLoS One; 2014; 9(8):e103861. PubMed ID: 25093893
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ca(V)1.3-driven SK channel activation regulates pacemaking and spike frequency adaptation in mouse chromaffin cells.
    Vandael DH; Zuccotti A; Striessnig J; Carbone E
    J Neurosci; 2012 Nov; 32(46):16345-59. PubMed ID: 23152617
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Pituitary adenylate cyclase-activating peptide enhances electrical coupling in the mouse adrenal medulla.
    Hill J; Lee SK; Samasilp P; Smith C
    Am J Physiol Cell Physiol; 2012 Aug; 303(3):C257-66. PubMed ID: 22592408
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Reduced calcium current density in female versus male mouse adrenal chromaffin cells in situ.
    Chan SA; Hill J; Smith C
    Cell Calcium; 2012; 52(3-4):313-20. PubMed ID: 22551621
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Functional chromaffin cell plasticity in response to stress: focus on nicotinic, gap junction, and voltage-gated Ca2+ channels.
    Guérineau NC; Desarménien MG; Carabelli V; Carbone E
    J Mol Neurosci; 2012 Oct; 48(2):368-86. PubMed ID: 22252244
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Gap junction-mediated intercellular communication in the adrenal medulla: an additional ingredient of stimulus-secretion coupling regulation.
    Colomer C; Martin AO; Desarménien MG; Guérineau NC
    Biochim Biophys Acta; 2012 Aug; 1818(8):1937-51. PubMed ID: 21839720
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Revisiting the stimulus-secretion coupling in the adrenal medulla: role of gap junction-mediated intercellular communication.
    Colomer C; Desarménien MG; Guérineau NC
    Mol Neurobiol; 2009 Aug; 40(1):87-100. PubMed ID: 19444654
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Gap junction communication between chromaffin cells: the hidden face of adrenal stimulus-secretion coupling.
    Guérineau NC
    Pflugers Arch; 2018 Jan; 470(1):89-96. PubMed ID: 28735418
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.