BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 21839782)

  • 1. Susceptibility to simvastatin-induced toxicity is partly determined by mitochondrial respiration and phosphorylation state of Akt.
    Mullen PJ; Zahno A; Lindinger P; Maseneni S; Felser A; Krähenbühl S; Brecht K
    Biochim Biophys Acta; 2011 Dec; 1813(12):2079-87. PubMed ID: 21839782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IGF-1 prevents simvastatin-induced myotoxicity in C2C12 myotubes.
    Bonifacio A; Sanvee GM; Brecht K; Kratschmar DV; Odermatt A; Bouitbir J; Krähenbühl S
    Arch Toxicol; 2017 May; 91(5):2223-2234. PubMed ID: 27734117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMP-activated protein kinase enhances the expression of muscle-specific ubiquitin ligases despite its activation of IGF-1/Akt signaling in C2C12 myotubes.
    Tong JF; Yan X; Zhu MJ; Du M
    J Cell Biochem; 2009 Oct; 108(2):458-68. PubMed ID: 19639604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simvastatin impairs ADP-stimulated respiration and increases mitochondrial oxidative stress in primary human skeletal myotubes.
    Kwak HB; Thalacker-Mercer A; Anderson EJ; Lin CT; Kane DA; Lee NS; Cortright RN; Bamman MM; Neufer PD
    Free Radic Biol Med; 2012 Jan; 52(1):198-207. PubMed ID: 22080086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of simvastatin on cholesterol metabolism in C2C12 myotubes and HepG2 cells, and consequences for statin-induced myopathy.
    Mullen PJ; Lüscher B; Scharnagl H; Krähenbühl S; Brecht K
    Biochem Pharmacol; 2010 Apr; 79(8):1200-9. PubMed ID: 20018177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The AKT/mTOR signaling pathway plays a key role in statin-induced myotoxicity.
    Bonifacio A; Sanvee GM; Bouitbir J; Krähenbühl S
    Biochim Biophys Acta; 2015 Aug; 1853(8):1841-9. PubMed ID: 25913013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mTORC2 is an important target for simvastatin-associated toxicity in C2C12 cells and mouse skeletal muscle - Roles of Rap1 geranylgeranylation and mitochondrial dysfunction.
    Sanvee GM; Hitzfeld L; Bouitbir J; Krähenbühl S
    Biochem Pharmacol; 2021 Oct; 192():114750. PubMed ID: 34461118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simvastatin inhibits glucose uptake activity and GLUT4 translocation through suppression of the IR/IRS-1/Akt signaling in C2C12 myotubes.
    Li W; Liang X; Zeng Z; Yu K; Zhan S; Su Q; Yan Y; Mansai H; Qiao W; Yang Q; Qi Z; Huang Z
    Biomed Pharmacother; 2016 Oct; 83():194-200. PubMed ID: 27470565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of insulin resistance by simvastatin in C2C12 myotubes and in mouse skeletal muscle.
    Sanvee GM; Panajatovic MV; Bouitbir J; Krähenbühl S
    Biochem Pharmacol; 2019 Jun; 164():23-33. PubMed ID: 30796916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of combined hormone replacement therapy or its effective agents on the IGF-1 pathway in skeletal muscle.
    Pöllänen E; Ronkainen PH; Horttanainen M; Takala T; Puolakka J; Suominen H; Sipilä S; Kovanen V
    Growth Horm IGF Res; 2010 Oct; 20(5):372-9. PubMed ID: 20724185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemerin-induced mitochondrial dysfunction in skeletal muscle.
    Xie Q; Deng Y; Huang C; Liu P; Yang Y; Shen W; Gao P
    J Cell Mol Med; 2015 May; 19(5):986-95. PubMed ID: 25754411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin-(1-7) decreases skeletal muscle atrophy induced by angiotensin II through a Mas receptor-dependent mechanism.
    Cisternas F; Morales MG; Meneses C; Simon F; Brandan E; Abrigo J; Vazquez Y; Cabello-Verrugio C
    Clin Sci (Lond); 2015 Mar; 128(5):307-19. PubMed ID: 25222828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin prevents and reverts simvastatin-induced toxicity in C2C12 skeletal muscle cells.
    Sanvee GM; Bouitbir J; Krähenbühl S
    Sci Rep; 2019 May; 9(1):7409. PubMed ID: 31092879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 20(s)‑ginseonside‑Rg3 modulation of AMPK/FoxO3 signaling to attenuate mitochondrial dysfunction in a dexamethasone‑injured C2C12 myotube‑based model of skeletal atrophy
    Wang M; Jiang R; Liu J; Xu X; Sun G; Zhao D; Sun L
    Mol Med Rep; 2021 May; 23(5):. PubMed ID: 33649814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TNF induction of atrogin-1/MAFbx mRNA depends on Foxo4 expression but not AKT-Foxo1/3 signaling.
    Moylan JS; Smith JD; Chambers MA; McLoughlin TJ; Reid MB
    Am J Physiol Cell Physiol; 2008 Oct; 295(4):C986-93. PubMed ID: 18701653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C2C12 myoblasts are more sensitive to the toxic effects of simvastatin than myotubes and show impaired proliferation and myotube formation.
    Sanvee GM; Bouitbir J; Krähenbühl S
    Biochem Pharmacol; 2021 Aug; 190():114649. PubMed ID: 34111424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavones Inhibit LPS-Induced Atrogin-1/MAFbx Expression in Mouse C2C12 Skeletal Myotubes.
    Shiota C; Abe T; Kawai N; Ohno A; Teshima-Kondo S; Mori H; Terao J; Tanaka E; Nikawa T
    J Nutr Sci Vitaminol (Tokyo); 2015; 61(2):188-94. PubMed ID: 26052151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IGF-I does not prevent myotube atrophy caused by proinflammatory cytokines despite activation of Akt/Foxo and GSK-3beta pathways and inhibition of atrogin-1 mRNA.
    Dehoux M; Gobier C; Lause P; Bertrand L; Ketelslegers JM; Thissen JP
    Am J Physiol Endocrinol Metab; 2007 Jan; 292(1):E145-50. PubMed ID: 16926385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Furazolidone induces apoptosis through activating reactive oxygen species-dependent mitochondrial signaling pathway and suppressing PI3K/Akt signaling pathway in HepG2 cells.
    Deng S; Tang S; Zhang S; Zhang C; Wang C; Zhou Y; Dai C; Xiao X
    Food Chem Toxicol; 2015 Jan; 75():173-86. PubMed ID: 25434308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms involved in 3',5'-cyclic adenosine monophosphate-mediated inhibition of the ubiquitin-proteasome system in skeletal muscle.
    Gonçalves DA; Lira EC; Baviera AM; Cao P; Zanon NM; Arany Z; Bedard N; Tanksale P; Wing SS; Lecker SH; Kettelhut IC; Navegantes LC
    Endocrinology; 2009 Dec; 150(12):5395-404. PubMed ID: 19837877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.