These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 21840033)
1. A novel application of H2O2-Fe(II) process for arsenate removal from synthetic acid mine drainage (AMD) water. Dong H; Guan X; Wang D; Li C; Yang X; Dou X Chemosphere; 2011 Nov; 85(7):1115-21. PubMed ID: 21840033 [TBL] [Abstract][Full Text] [Related]
2. Removal of arsenic from water: effect of calcium ions on As(III) removal in the KMnO(4)-Fe(II) process. Guan X; Ma J; Dong H; Jiang L Water Res; 2009 Dec; 43(20):5119-28. PubMed ID: 19201439 [TBL] [Abstract][Full Text] [Related]
3. Treatment of combined acid mine drainage (AMD)--flotation circuit effluents from copper mine via Fenton's process. Mahiroglu A; Tarlan-Yel E; Sevimli MF J Hazard Mater; 2009 Jul; 166(2-3):782-7. PubMed ID: 19147282 [TBL] [Abstract][Full Text] [Related]
4. Removal of phosphate from secondary effluent with Fe2+ enhanced by H2O2 at nature pH/neutral pH. Li C; Ma J; Shen J; Wang P J Hazard Mater; 2009 Jul; 166(2-3):891-6. PubMed ID: 19136208 [TBL] [Abstract][Full Text] [Related]
5. A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution. Jia Y; Zhang D; Pan R; Xu L; Demopoulos GP Water Res; 2012 Feb; 46(2):500-8. PubMed ID: 22142599 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous removal of chromium and arsenate from contaminated groundwater by ferrous sulfate: batch uptake behavior. Guan X; Dong H; Ma J; Lo IM J Environ Sci (China); 2011; 23(3):372-80. PubMed ID: 21520805 [TBL] [Abstract][Full Text] [Related]
7. Hydroxyl radical involvement in the decomposition of hydrogen peroxide by ferrous and ferric-nitrilotriacetate complexes at neutral pH. Dao YH; De Laat J Water Res; 2011 May; 45(11):3309-17. PubMed ID: 21514949 [TBL] [Abstract][Full Text] [Related]
8. Coprecipitation of arsenate with iron(III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention. Jia Y; Demopoulos GP Water Res; 2008 Feb; 42(3):661-8. PubMed ID: 17825873 [TBL] [Abstract][Full Text] [Related]
9. Adsorption of As(V) from water using Mg-Fe-based hydrotalcite (FeHT). Türk T; Alp I; Deveci H J Hazard Mater; 2009 Nov; 171(1-3):665-70. PubMed ID: 19589641 [TBL] [Abstract][Full Text] [Related]
10. Phosphorus removal performance of acid mine drainage from wastewater. Ruihua L; Lin Z; Tao T; Bo L J Hazard Mater; 2011 Jun; 190(1-3):669-76. PubMed ID: 21514994 [TBL] [Abstract][Full Text] [Related]
11. Arsenic recovery from water containing arsenite and arsenate ions by hydrothermal mineralization. Itakura T; Sasai R; Itoh H J Hazard Mater; 2007 Jul; 146(1-2):328-33. PubMed ID: 17239530 [TBL] [Abstract][Full Text] [Related]
12. Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles. Jin Y; Liu F; Tong M; Hou Y J Hazard Mater; 2012 Aug; 227-228():461-8. PubMed ID: 22703733 [TBL] [Abstract][Full Text] [Related]
13. Removal of organic carbon from wastepaper pulp effluent by lab-scale solar photo-Fenton process. Xu M; Wang Q; Hao Y J Hazard Mater; 2007 Sep; 148(1-2):103-9. PubMed ID: 17367923 [TBL] [Abstract][Full Text] [Related]
14. Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process. Guo JS; Abbas AA; Chen YP; Liu ZP; Fang F; Chen P J Hazard Mater; 2010 Jun; 178(1-3):699-705. PubMed ID: 20188464 [TBL] [Abstract][Full Text] [Related]
15. Application of quadratic regression model for Fenton treatment of municipal landfill leachate. Ghanbarzadeh Lak M; Sabour MR; Amiri A; Rabbani O Waste Manag; 2012 Oct; 32(10):1895-902. PubMed ID: 22717412 [TBL] [Abstract][Full Text] [Related]
16. XAFS study of starch-stabilized magnetite nanoparticles and surface speciation of arsenate. Zhang M; Pan G; Zhao D; He G Environ Pollut; 2011 Dec; 159(12):3509-14. PubMed ID: 21890253 [TBL] [Abstract][Full Text] [Related]
17. Dye wastewater treated by Fenton process with ferrous ions electrolytically generated from iron-containing sludge. Li CW; Chen YM; Chiou YC; Liu CK J Hazard Mater; 2007 Jun; 144(1-2):570-6. PubMed ID: 17137712 [TBL] [Abstract][Full Text] [Related]
18. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. Asta MP; Cama J; Martínez M; Giménez J J Hazard Mater; 2009 Nov; 171(1-3):965-72. PubMed ID: 19628332 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances. Mikutta C; Kretzschmar R Environ Sci Technol; 2011 Nov; 45(22):9550-7. PubMed ID: 21985502 [TBL] [Abstract][Full Text] [Related]
20. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite. Gräfe M; Beattie DA; Smith E; Skinner WM; Singh B J Colloid Interface Sci; 2008 Jun; 322(2):399-413. PubMed ID: 18423478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]