These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Effect of handrim diameter on manual wheelchair propulsion: mechanical energy and power flow analysis. Guo LY; Su FC; An KN Clin Biomech (Bristol); 2006 Feb; 21(2):107-15. PubMed ID: 16226359 [TBL] [Abstract][Full Text] [Related]
6. Preferred elbow position in confined wheelchair configuration. Lin CJ; Lin PC; Su FC J Biomech; 2009 May; 42(8):1005-9. PubMed ID: 19345359 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional kinematics of the shoulder complex during wheelchair propulsion: a technical report. Davis JL; Growney ES; Johnson ME; Iuliano BA; An KN J Rehabil Res Dev; 1998 Jan; 35(1):61-72. PubMed ID: 9505254 [TBL] [Abstract][Full Text] [Related]
8. Shoulder kinematics and kinetics during two speeds of wheelchair propulsion. Koontz AM; Cooper RA; Boninger ML; Souza AL; Fay BT J Rehabil Res Dev; 2002; 39(6):635-49. PubMed ID: 17943666 [TBL] [Abstract][Full Text] [Related]
9. Surface electromyography activity of upper limb muscle during wheelchair propulsion: Influence of wheelchair configuration. Louis N; Gorce P Clin Biomech (Bristol); 2010 Nov; 25(9):879-85. PubMed ID: 20846767 [TBL] [Abstract][Full Text] [Related]
10. Arm crank vs handrim wheelchair propulsion: metabolic and cardiopulmonary responses. Smith PA; Glaser RM; Petrofsky JS; Underwood PD; Smith GB; Richard JJ Arch Phys Med Rehabil; 1983 Jun; 64(6):249-54. PubMed ID: 6860094 [TBL] [Abstract][Full Text] [Related]
12. Shoulder load during handcycling at different incline and speed conditions. Arnet U; van Drongelen S; van der Woude LH; Veeger DH Clin Biomech (Bristol); 2012 Jan; 27(1):1-6. PubMed ID: 21831491 [TBL] [Abstract][Full Text] [Related]
13. Degree of coordination between breathing and rhythmic arm movements during hand rim wheelchair propulsion. Fabre N; Perrey S; Arbez L; Ruiz J; Tordi N; Rouillon JD Int J Sports Med; 2006 Jan; 27(1):67-74. PubMed ID: 16388445 [TBL] [Abstract][Full Text] [Related]
14. Prediction of applied forces in handrim wheelchair propulsion. Lin CJ; Lin PC; Guo LY; Su FC J Biomech; 2011 Feb; 44(3):455-60. PubMed ID: 20980008 [TBL] [Abstract][Full Text] [Related]
15. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia. Collinger JL; Boninger ML; Koontz AM; Price R; Sisto SA; Tolerico ML; Cooper RA Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997 [TBL] [Abstract][Full Text] [Related]
16. Seat height in handrim wheelchair propulsion. van der Woude LH; Veeger DJ; Rozendal RH; Sargeant TJ J Rehabil Res Dev; 1989; 26(4):31-50. PubMed ID: 2600867 [TBL] [Abstract][Full Text] [Related]
17. Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces. Dubowsky SR; Rasmussen J; Sisto SA; Langrana NA J Biomech; 2008 Oct; 41(14):2981-8. PubMed ID: 18804763 [TBL] [Abstract][Full Text] [Related]
18. Biomechanics of wheelchair propulsion as a function of seat position and user-to-chair interface. Hughes CJ; Weimar WH; Sheth PN; Brubaker CE Arch Phys Med Rehabil; 1992 Mar; 73(3):263-9. PubMed ID: 1543431 [TBL] [Abstract][Full Text] [Related]
19. Simulated effect of reaction force redirection on the upper extremity mechanical demand imposed during manual wheelchair propulsion. Munaretto JM; McNitt-Gray JL; Flashner H; Requejo PS Clin Biomech (Bristol); 2012 Mar; 27(3):255-62. PubMed ID: 22071430 [TBL] [Abstract][Full Text] [Related]