These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 21840224)
1. An EMG-driven model applied for predicting metabolic energy consumption during movement. Bisi MC; Stagni R; Houdijk H; Gnudi G J Electromyogr Kinesiol; 2011 Dec; 21(6):1074-80. PubMed ID: 21840224 [TBL] [Abstract][Full Text] [Related]
2. A model of human muscle energy expenditure. Umberger BR; Gerritsen KG; Martin PE Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):99-111. PubMed ID: 12745424 [TBL] [Abstract][Full Text] [Related]
3. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models. Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C Clin Biomech (Bristol); 2009 Aug; 24(7):533-41. PubMed ID: 19493597 [TBL] [Abstract][Full Text] [Related]
4. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions. Doorenbosch CA; Joosten A; Harlaar J J Electromyogr Kinesiol; 2005 Aug; 15(4):429-35. PubMed ID: 15811613 [TBL] [Abstract][Full Text] [Related]
5. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow. Koo TK; Mak AF J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650 [TBL] [Abstract][Full Text] [Related]
6. Is energy expenditure taken into account in human sub-maximal jumping?--A simulation study. Vanrenterghem J; Bobbert MF; Casius LJ; De Clercq D J Electromyogr Kinesiol; 2008 Feb; 18(1):108-15. PubMed ID: 17085059 [TBL] [Abstract][Full Text] [Related]
7. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait. Bogey RA; Perry J; Gitter AJ IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):302-10. PubMed ID: 16200754 [TBL] [Abstract][Full Text] [Related]
8. Trunk muscle activation and associated lumbar spine joint shear forces under different levels of external forward force applied to the trunk. Kingma I; Staudenmann D; van Dieën JH J Electromyogr Kinesiol; 2007 Feb; 17(1):14-24. PubMed ID: 16531071 [TBL] [Abstract][Full Text] [Related]
9. A two-step EMG-and-optimization process to estimate muscle force during dynamic movement. Amarantini D; Rao G; Berton E J Biomech; 2010 Jun; 43(9):1827-30. PubMed ID: 20206935 [TBL] [Abstract][Full Text] [Related]
10. [A hybrid method including optimization and force-EMG relationship for predicting muscle force]. Zhang X; Ye M; Zhang L; Nie W; Wang C Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1260-3. PubMed ID: 20095482 [TBL] [Abstract][Full Text] [Related]
11. Are the maximum shortening velocity and the shape parameter in a Hill-type model of whole muscle related to activation? Camilleri MJ; Hull ML J Biomech; 2005 Nov; 38(11):2172-80. PubMed ID: 15992802 [TBL] [Abstract][Full Text] [Related]
12. A comparative study of two trunk biomechanical models under symmetric and asymmetric loadings. Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C J Biomech; 2010 Feb; 43(3):485-91. PubMed ID: 19880122 [TBL] [Abstract][Full Text] [Related]
13. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. Lloyd DG; Besier TF J Biomech; 2003 Jun; 36(6):765-76. PubMed ID: 12742444 [TBL] [Abstract][Full Text] [Related]
14. Estimation of elbow-induced wrist force with EMG signals using fast orthogonal search. Mobasser F; Eklund JM; Hashtrudi-Zaad K IEEE Trans Biomed Eng; 2007 Apr; 54(4):683-93. PubMed ID: 17405375 [TBL] [Abstract][Full Text] [Related]
15. Application of the segment weight dynamic movement method to the normalization of gait EMG amplitude. Nishijima Y; Kato T; Yoshizawa M; Miyashita M; Iida H J Electromyogr Kinesiol; 2010 Jun; 20(3):550-7. PubMed ID: 19699658 [TBL] [Abstract][Full Text] [Related]
16. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach. Heintz S; Gutierrez-Farewik EM Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088 [TBL] [Abstract][Full Text] [Related]
17. An EMG-driven biomechanical model that accounts for the decrease in moment generation capacity during a dynamic fatigued condition. Rao G; Berton E; Amarantini D; Vigouroux L; Buchanan TS J Biomech Eng; 2010 Jul; 132(7):071003. PubMed ID: 20590281 [TBL] [Abstract][Full Text] [Related]
18. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation. de Groot JH; Rozendaal LA; Meskers CG; Arwert HJ Clin Biomech (Bristol); 2004 Oct; 19(8):790-800. PubMed ID: 15342151 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of power spectrum density function of EMG during muscle contraction below 30%MVC. Roman-Liu D; Konarska M J Electromyogr Kinesiol; 2009 Oct; 19(5):864-74. PubMed ID: 18590966 [TBL] [Abstract][Full Text] [Related]
20. Sensitivity analysis of an energetic muscle model applied at whole body level in recumbent pedalling. Bisi MC; Stagni R; Gnudi G Comput Methods Biomech Biomed Engin; 2012; 15(5):527-38. PubMed ID: 21390932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]