BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21840303)

  • 1. Hepatocyte growth factor suppresses the anticancer effect of irinotecan by decreasing the level of active metabolite in HepG2 cells.
    Okumura M; Iwakiri T; Takagi A; Hirabara Y; Kawano Y; Arimori K
    Biochem Pharmacol; 2011 Dec; 82(11):1720-30. PubMed ID: 21840303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of UGT1A1, CYP3A and CES Activities on the Pharmacokinetics of Irinotecan and its Metabolites in Patients with UGT1A1 Gene Polymorphisms.
    Yokokawa A; Kaneko S; Endo S; Minowa Y; Ayukawa H; Hirano R; Nagashima F; Naruge D; Okano N; Kobayashi T; Kawai K; Furuse J; Furuta T; Shibasaki H
    Eur J Drug Metab Pharmacokinet; 2021 Mar; 46(2):317-324. PubMed ID: 33619631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MET increases the sensitivity of gefitinib-resistant cells to SN-38, an active metabolite of irinotecan, by up-regulating the topoisomerase I activity.
    Sakai A; Kasahara K; Ohmori T; Kimura H; Sone T; Fujimura M; Nakao S
    J Thorac Oncol; 2012 Sep; 7(9):1337-44. PubMed ID: 22722827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross talk between c-Met and epidermal growth factor receptor during retinal pigment epithelial wound healing.
    Xu KP; Yu FS
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2242-8. PubMed ID: 17460286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatocyte growth factor reduces susceptibility to an irreversible epidermal growth factor receptor inhibitor in EGFR-T790M mutant lung cancer.
    Yamada T; Matsumoto K; Wang W; Li Q; Nishioka Y; Sekido Y; Sone S; Yano S
    Clin Cancer Res; 2010 Jan; 16(1):174-83. PubMed ID: 20008840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Met kinase inhibitor E7050 reverses three different mechanisms of hepatocyte growth factor-induced tyrosine kinase inhibitor resistance in EGFR mutant lung cancer.
    Wang W; Li Q; Takeuchi S; Yamada T; Koizumi H; Nakamura T; Matsumoto K; Mukaida N; Nishioka Y; Sone S; Nakagawa T; Uenaka T; Yano S
    Clin Cancer Res; 2012 Mar; 18(6):1663-71. PubMed ID: 22317763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatocyte growth factor induces resistance to anti-epidermal growth factor receptor antibody in lung cancer.
    Yamada T; Takeuchi S; Kita K; Bando H; Nakamura T; Matsumoto K; Yano S
    J Thorac Oncol; 2012 Feb; 7(2):272-80. PubMed ID: 22089117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crizotinib overcomes hepatocyte growth factor-mediated resistance to gefitinib in EGFR-mutant non-small-cell lung cancer cells.
    Chen X; Zhou JY; Zhao J; Chen JJ; Ma SN; Zhou JY
    Anticancer Drugs; 2013 Nov; 24(10):1039-46. PubMed ID: 23962905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Role of UGT1A1*28 and UGT1A1*6 for irinotecan-induced adverse drug reaction].
    Onoue M; Inui K
    Gan To Kagaku Ryoho; 2008 Jul; 35(7):1080-5. PubMed ID: 18633245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humanized anti-hepatocyte growth factor (HGF) antibody suppresses innate irinotecan (CPT-11) resistance induced by fibroblast-derived HGF.
    Woo JK; Kang JH; Kim B; Park BH; Shin KJ; Song SW; Kim JJ; Kim HM; Lee SJ; Oh SH
    Oncotarget; 2015 Sep; 6(27):24047-60. PubMed ID: 26090722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous HGF Bypasses the Effects of ErbB Inhibition on Tumor Cell Viability in Medulloblastoma Cell Lines.
    Zomerman WW; Plasschaert SL; Diks SH; Lourens HJ; Meeuwsen-de Boer T; Hoving EW; den Dunnen WF; de Bont ES
    PLoS One; 2015; 10(10):e0141381. PubMed ID: 26496080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epidermal growth factor and hepatocyte growth factor cooperate to enhance cell proliferation, scatter, and invasion in murine mammary epithelial cells.
    Accornero P; Miretti S; Starvaggi Cucuzza L; Martignani E; Baratta M
    J Mol Endocrinol; 2010 Feb; 44(2):115-25. PubMed ID: 19850646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucuronidation of 7-ethyl-10-hydroxycamptothecin (SN-38), an active metabolite of irinotecan (CPT-11), by human UGT1A1 variants, G71R, P229Q, and Y486D.
    Jinno H; Tanaka-Kagawa T; Hanioka N; Saeki M; Ishida S; Nishimura T; Ando M; Saito Y; Ozawa S; Sawada J
    Drug Metab Dispos; 2003 Jan; 31(1):108-13. PubMed ID: 12485959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes.
    Iyer L; King CD; Whitington PF; Green MD; Roy SK; Tephly TR; Coffman BL; Ratain MJ
    J Clin Invest; 1998 Feb; 101(4):847-54. PubMed ID: 9466980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of obesity on accumulation of the toxic irinotecan metabolite, SN-38, in mice.
    Mallick P; Shah P; Gandhi A; Ghose R
    Life Sci; 2015 Oct; 139():132-8. PubMed ID: 26334566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual inhibition of Met kinase and angiogenesis to overcome HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer.
    Takeuchi S; Wang W; Li Q; Yamada T; Kita K; Donev IS; Nakamura T; Matsumoto K; Shimizu E; Nishioka Y; Sone S; Nakagawa T; Uenaka T; Yano S
    Am J Pathol; 2012 Sep; 181(3):1034-43. PubMed ID: 22789825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paracrine receptor activation by microenvironment triggers bypass survival signals and ALK inhibitor resistance in EML4-ALK lung cancer cells.
    Yamada T; Takeuchi S; Nakade J; Kita K; Nakagawa T; Nanjo S; Nakamura T; Matsumoto K; Soda M; Mano H; Uenaka T; Yano S
    Clin Cancer Res; 2012 Jul; 18(13):3592-602. PubMed ID: 22553343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-c-MET Nanobody - a new potential drug in multiple myeloma treatment.
    Slørdahl TS; Denayer T; Moen SH; Standal T; Børset M; Ververken C; Rø TB
    Eur J Haematol; 2013 Nov; 91(5):399-410. PubMed ID: 23952536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UGT1A10 is responsible for SN-38 glucuronidation and its expression in human lung cancers.
    Oguri T; Takahashi T; Miyazaki M; Isobe T; Kohno N; Mackenzie PI; Fujiwara Y
    Anticancer Res; 2004; 24(5A):2893-6. PubMed ID: 15517893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatocyte growth factor expression in EGFR mutant lung cancer with intrinsic and acquired resistance to tyrosine kinase inhibitors in a Japanese cohort.
    Yano S; Yamada T; Takeuchi S; Tachibana K; Minami Y; Yatabe Y; Mitsudomi T; Tanaka H; Kimura T; Kudoh S; Nokihara H; Ohe Y; Yokota J; Uramoto H; Yasumoto K; Kiura K; Higashiyama M; Oda M; Saito H; Yoshida J; Kondoh K; Noguchi M
    J Thorac Oncol; 2011 Dec; 6(12):2011-7. PubMed ID: 22052230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.