BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 21840318)

  • 21. Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A.
    Rogers GW; Richter NJ; Merrick WC
    J Biol Chem; 1999 Apr; 274(18):12236-44. PubMed ID: 10212190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between eIF4AI and its accessory factors eIF4B and eIF4H.
    Rozovsky N; Butterworth AC; Moore MJ
    RNA; 2008 Oct; 14(10):2136-48. PubMed ID: 18719248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupling between the DEAD-box RNA helicases Ded1p and eIF4A.
    Gao Z; Putnam AA; Bowers HA; Guenther UP; Ye X; Kindsfather A; Hilliker AK; Jankowsky E
    Elife; 2016 Aug; 5():. PubMed ID: 27494274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export.
    Montpetit B; Thomsen ND; Helmke KJ; Seeliger MA; Berger JM; Weis K
    Nature; 2011 Apr; 472(7342):238-42. PubMed ID: 21441902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The domains of yeast eIF4G, eIF4E and the cap fine-tune eIF4A activities through an intricate network of stimulatory and inhibitory effects.
    Krause L; Willing F; Andreou AZ; Klostermeier D
    Nucleic Acids Res; 2022 Jun; 50(11):6497-6510. PubMed ID: 35689631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-stranded regions modulate conformational dynamics and ATPase activity of eIF4A to optimize 5'-UTR unwinding.
    Andreou AZ; Harms U; Klostermeier D
    Nucleic Acids Res; 2019 Jun; 47(10):5260-5275. PubMed ID: 30997503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of the yeast eIF4A-eIF4G complex: an RNA-helicase controlled by protein-protein interactions.
    Schütz P; Bumann M; Oberholzer AE; Bieniossek C; Trachsel H; Altmann M; Baumann U
    Proc Natl Acad Sci U S A; 2008 Jul; 105(28):9564-9. PubMed ID: 18606994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative characterization of two DEAD-box RNA helicases in superfamily II: human translation-initiation factor 4A and hepatitis C virus non-structural protein 3 (NS3) helicase.
    Du MX; Johnson RB; Sun XL; Staschke KA; Colacino J; Wang QM
    Biochem J; 2002 Apr; 363(Pt 1):147-55. PubMed ID: 11903057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutational analysis of the DEAD-box RNA helicase eIF4AII characterizes its interaction with transformation suppressor Pdcd4 and eIF4GI.
    Zakowicz H; Yang HS; Stark C; Wlodawer A; Laronde-Leblanc N; Colburn NH
    RNA; 2005 Mar; 11(3):261-74. PubMed ID: 15661843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The eukaryotic initiation factor (eIF) 4G HEAT domain promotes translation re-initiation in yeast both dependent on and independent of eIF4A mRNA helicase.
    Watanabe R; Murai MJ; Singh CR; Fox S; Ii M; Asano K
    J Biol Chem; 2010 Jul; 285(29):21922-33. PubMed ID: 20463023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic regulation of the translation initiation helicase complex by mitogenic signal transduction to eukaryotic translation initiation factor 4G.
    Dobrikov MI; Dobrikova EY; Gromeier M
    Mol Cell Biol; 2013 Mar; 33(5):937-46. PubMed ID: 23263986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA aptamers to initiation factor 4A helicase hinder cap-dependent translation by blocking ATP hydrolysis.
    Oguro A; Ohtsu T; Svitkin YV; Sonenberg N; Nakamura Y
    RNA; 2003 Apr; 9(4):394-407. PubMed ID: 12649492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Competitive and noncompetitive binding of eIF4B, eIF4A, and the poly(A) binding protein to wheat translation initiation factor eIFiso4G.
    Cheng S; Gallie DR
    Biochemistry; 2010 Sep; 49(38):8251-65. PubMed ID: 20795652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis.
    Pause A; Méthot N; Sonenberg N
    Mol Cell Biol; 1993 Nov; 13(11):6789-98. PubMed ID: 8413273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-molecule kinetics of the eukaryotic initiation factor 4AI upon RNA unwinding.
    Sun Y; Atas E; Lindqvist LM; Sonenberg N; Pelletier J; Meller A
    Structure; 2014 Jul; 22(7):941-8. PubMed ID: 24909782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human translation initiation factor eIF4G1 possesses a low-affinity ATP binding site facing the ATP-binding cleft of eIF4A in the eIF4G/eIF4A complex.
    Akabayov SR; Akabayov B; Wagner G
    Biochemistry; 2014 Oct; 53(41):6422-5. PubMed ID: 25255371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity.
    Feoktistova K; Tuvshintogs E; Do A; Fraser CS
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13339-44. PubMed ID: 23901100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis for the enhancement of eIF4A helicase activity by eIF4G.
    Oberer M; Marintchev A; Wagner G
    Genes Dev; 2005 Sep; 19(18):2212-23. PubMed ID: 16166382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A.
    Pause A; Sonenberg N
    EMBO J; 1992 Jul; 11(7):2643-54. PubMed ID: 1378397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. eIF4A: the godfather of the DEAD box helicases.
    Rogers GW; Komar AA; Merrick WC
    Prog Nucleic Acid Res Mol Biol; 2002; 72():307-31. PubMed ID: 12206455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.