These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 21840633)
1. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Ye WL; Khan MA; McGrath SP; Zhao FJ Environ Pollut; 2011 Dec; 159(12):3739-43. PubMed ID: 21840633 [TBL] [Abstract][Full Text] [Related]
2. Phytoremediation of arsenic contaminated soil by Pteris vittata L. II. Effect on arsenic uptake and rice yield. Mandal A; Purakayastha TJ; Patra AK; Sanyal SK Int J Phytoremediation; 2012 Jul; 14(6):621-8. PubMed ID: 22908631 [TBL] [Abstract][Full Text] [Related]
3. Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic. Shelmerdine PA; Black CR; McGrath SP; Young SD Environ Pollut; 2009 May; 157(5):1589-96. PubMed ID: 19171413 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata. Han YH; Liu X; Rathinasabapathi B; Li HB; Chen Y; Ma LQ Environ Pollut; 2017 Aug; 227():569-577. PubMed ID: 28501771 [TBL] [Abstract][Full Text] [Related]
5. Phytoremediation of an arsenic-contaminated site using Pteris vittata L. and Pityrogramma calomelanos var. austroamericana: a long-term study. Niazi NK; Singh B; Van Zwieten L; Kachenko AG Environ Sci Pollut Res Int; 2012 Sep; 19(8):3506-15. PubMed ID: 22529007 [TBL] [Abstract][Full Text] [Related]
6. Pteris vittata continuously removed arsenic from non-labile fraction in three contaminated-soils during 3.5 years of phytoextraction. Lessl JT; Luo J; Ma LQ J Hazard Mater; 2014 Aug; 279():485-92. PubMed ID: 25108101 [TBL] [Abstract][Full Text] [Related]
7. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata. Danh LT; Truong P; Mammucari R; Foster N Int J Phytoremediation; 2014; 16(5):429-53. PubMed ID: 24912227 [TBL] [Abstract][Full Text] [Related]
8. The arsenic hyperaccumulator fern Pteris vittata L. Xie QE; Yan XL; Liao XY; Li X Environ Sci Technol; 2009 Nov; 43(22):8488-95. PubMed ID: 20028042 [TBL] [Abstract][Full Text] [Related]
9. Phytate promoted arsenic uptake and growth in arsenic-hyperaccumulator Pteris vittata by upregulating phosphorus transporters. Liu X; Feng HY; Fu JW; Sun D; Cao Y; Chen Y; Xiang P; Liu Y; Ma LQ Environ Pollut; 2018 Oct; 241():240-246. PubMed ID: 29807282 [TBL] [Abstract][Full Text] [Related]
10. Phytoextraction of arsenic-contaminated soil with Pteris vittata in Henan Province, China: comprehensive evaluation of remediation efficiency correcting for atmospheric depositions. Lei M; Wan X; Guo G; Yang J; Chen T Environ Sci Pollut Res Int; 2018 Jan; 25(1):124-131. PubMed ID: 27928750 [TBL] [Abstract][Full Text] [Related]
11. Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L. Yan X; Zhang M; Liao X; Tu S Chemosphere; 2012 Jun; 88(2):240-4. PubMed ID: 22463947 [TBL] [Abstract][Full Text] [Related]
12. Phytoremediation of arsenic contaminated soil by Pteris vittata L. I. Influence of phosphatic fertilizers and repeated harvests. Mandal A; Purakayastha TJ; Patra AK; Sanyal SK Int J Phytoremediation; 2012 Dec; 14(10):978-95. PubMed ID: 22908659 [TBL] [Abstract][Full Text] [Related]
13. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution. Gonzaga MI; Santos JA; Ma LQ Environ Pollut; 2008 Jul; 154(2):212-8. PubMed ID: 18037547 [TBL] [Abstract][Full Text] [Related]
14. Zinc tolerance and accumulation in Pteris vittata L. and its potential for phytoremediation of Zn- and As-contaminated soil. An ZZ; Huang ZC; Lei M; Liao XY; Zheng YM; Chen TB Chemosphere; 2006 Feb; 62(5):796-802. PubMed ID: 15987653 [TBL] [Abstract][Full Text] [Related]
15. Potential of Pteris vittata L. for phytoremediation of sites co-contaminated with cadmium and arsenic: the tolerance and accumulation. Xiao X; Chen T; An Z; Lei M; Huang Z; Liao X; Liu Y J Environ Sci (China); 2008; 20(1):62-7. PubMed ID: 18572524 [TBL] [Abstract][Full Text] [Related]
16. Pteris vittata coupled with phosphate rock effectively reduced As and Cd uptake by water spinach from contaminated soil. Hua CY; Chen JX; Cao Y; Li HB; Chen Y; Ma LQ Chemosphere; 2020 May; 247():125916. PubMed ID: 32069716 [TBL] [Abstract][Full Text] [Related]
17. Remediation of arsenic-contaminated paddy soil by intercropping aquatic vegetables and rice. Huang SY; Zhuo C; Du XY; Li HS Int J Phytoremediation; 2021; 23(10):1021-1029. PubMed ID: 33491468 [TBL] [Abstract][Full Text] [Related]
18. Arsenic and heavy metal accumulation by Pteris vittata L. and P. umbrosa R. Br. Koller CE; Patrick JW; Rose RJ; Offler CE; MacFarlane GR Bull Environ Contam Toxicol; 2008 Feb; 80(2):128-33. PubMed ID: 18183339 [TBL] [Abstract][Full Text] [Related]
19. Arsenic removal and biomass reduction of As-hyperaccumulator Pteris vittata: Coupling ethanol extraction with anaerobic digestion. da Silva EB; Mussoline WA; Wilkie AC; Ma LQ Sci Total Environ; 2019 May; 666():205-211. PubMed ID: 30798231 [TBL] [Abstract][Full Text] [Related]
20. Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Cao X; Ma LQ; Shiralipour A Environ Pollut; 2003; 126(2):157-67. PubMed ID: 12927487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]