BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 21840682)

  • 1. Comparison of intraoperative subtraction pachymetry and postoperative anterior segment optical coherence tomography of laser in situ keratomileusis flaps.
    Murakami Y; Manche EE
    J Cataract Refract Surg; 2011 Oct; 37(10):1879-83. PubMed ID: 21840682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography.
    von Jagow B; Kohnen T
    J Cataract Refract Surg; 2009 Jan; 35(1):35-41. PubMed ID: 19101422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A longitudinal study of LASIK flap and stromal thickness with high-speed optical coherence tomography.
    Li Y; Netto MV; Shekhar R; Krueger RR; Huang D
    Ophthalmology; 2007 Jun; 114(6):1124-32. PubMed ID: 17320959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond laser versus mechanical microkeratomes for flap creation in laser in situ keratomileusis and effect of postoperative measurement interval on estimated femtosecond flap thickness.
    Rosa AM; Neto Murta J; Quadrado MJ; Tavares C; Lobo C; Van Velze R; Castanheira-Dinis A
    J Cataract Refract Surg; 2009 May; 35(5):833-8. PubMed ID: 19393881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of intraoperative ultrasound pachymetry and postoperative optical coherence tomography of anterior segment in the measurement of flap thickness in eyes receiving laser in situ keratomileusis.
    Sun L; Song Y; Zhang R; Xu G
    Eye Sci; 2012 Jun; 27(2):60-3. PubMed ID: 22678866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of corneal flap morphology using AS-OCT in LASIK with the WaveLight FS200 femtosecond laser versus a mechanical microkeratome.
    Zhang Y; Chen YG; Xia YJ
    J Refract Surg; 2013 May; 29(5):320-4. PubMed ID: 23659230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of 2 femtosecond lasers for laser in situ keratomileusis flap creation.
    Zhang J; Zhou Y; Zhai C; Tian L
    J Cataract Refract Surg; 2013 Jun; 39(6):922-7. PubMed ID: 23688879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictability of corneal flap thickness in laser in situ keratomileusis using a 200 kHz femtosecond laser.
    Cummings AB; Cummings BK; Kelly GE
    J Cataract Refract Surg; 2013 Mar; 39(3):378-85. PubMed ID: 23352500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the Ziemer FEMTO LDV femtosecond laser and Moria M2 mechanical microkeratome.
    Zhou Y; Zhang J; Tian L; Zhai C
    J Refract Surg; 2012 Mar; 28(3):189-94. PubMed ID: 22373033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of LASIK flap thickness and morphology between the Intralase 60- and 150-kHz femtosecond lasers.
    Yu CQ; Manche EE
    J Refract Surg; 2014 Dec; 30(12):827-30. PubMed ID: 25437481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of LASIK flap thickness with anterior segment optical coherence tomography.
    Cheng AC; Ho T; Lau S; Wong AL; Leung C; Lam DS
    J Refract Surg; 2008 Nov; 24(9):879-84. PubMed ID: 19044227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thin flap laser in situ keratomileusis: flap dimensions with the Moria LSK-One manual microkeratome using the 100-microm head.
    Duffey RJ
    J Cataract Refract Surg; 2005 Jun; 31(6):1159-62. PubMed ID: 16039490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dry eye associated with laser in situ keratomileusis: Mechanical microkeratome versus femtosecond laser.
    Salomão MQ; Ambrósio R; Wilson SE
    J Cataract Refract Surg; 2009 Oct; 35(10):1756-60. PubMed ID: 19781472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Laser In Situ Keratomileusis Flap Morphology and Predictability by WaveLight FS200 Femtosecond Laser and Moria Microkeratome: An Anterior Segment Optical Coherence Tomography Study.
    Eldaly ZH; Abdelsalam MA; Hussein MS; Nassr MA
    Korean J Ophthalmol; 2019 Apr; 33(2):113-121. PubMed ID: 30977320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtosecond laser flap parameters and visual outcomes in laser in situ keratomileusis.
    Issa A; Al Hassany U
    J Cataract Refract Surg; 2011 Apr; 37(4):665-74. PubMed ID: 21420591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of microkeratome thin flap architecture using Fourier-domain optical coherence tomography.
    Rocha KM; Randleman JB; Stulting RD
    J Refract Surg; 2011 Oct; 27(10):759-63. PubMed ID: 21853960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thin-flap laser in situ keratomileusis with femtosecond-laser technology.
    Kymionis GD; Kontadakis GA; Grentzelos MA; Panagopoulou SI; Stojanovic N; Kankariya VP; Henderson BA; Pallikaris IG
    J Cataract Refract Surg; 2013 Sep; 39(9):1366-71. PubMed ID: 23820304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive factors of femtosecond laser flap thickness measured by online optical coherence pachymetry subtraction in sub-Bowman keratomileusis.
    Pfaeffl WA; Kunze M; Zenk U; Pfaeffl MB; Schuster T; Lohmann C
    J Cataract Refract Surg; 2008 Nov; 34(11):1872-80. PubMed ID: 19006732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser in situ keratomileusis flap thickness using the Hansatome microkeratome with zero compression heads.
    Taneri S
    J Cataract Refract Surg; 2006 Jan; 32(1):72-7. PubMed ID: 16516782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stromal bed thickness measurement during laser in situ keratomileusis using intraoperative optical coherence tomography.
    Ye C; Yu M; Jhanji V
    Cornea; 2015 Apr; 34(4):387-91. PubMed ID: 25651495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.