BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21840690)

  • 1. A biologically friendly approach for silver nanoparticle formation and their in situ attachment to lecithin vesicles.
    Sharma D
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):610-3. PubMed ID: 21840690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biologically friendly single step method for gold nanoparticle formation.
    Sharma D
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):330-7. PubMed ID: 21459561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ synthesis of nano silver/lecithin on wool: enhancing nanoparticles diffusion.
    Barani H; Montazer M; Samadi N; Toliyat T
    Colloids Surf B Biointerfaces; 2012 Apr; 92():9-15. PubMed ID: 22178185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single step, pH induced gold nanoparticle chain formation in lecithin/water system.
    Sharma D
    Colloids Surf B Biointerfaces; 2013 Jul; 107():262-6. PubMed ID: 23415484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure.
    Smirnova TN; Kokhtych LM; Kutsenko AS; Sakhno OV; Stumpe J
    Nanotechnology; 2009 Oct; 20(40):405301. PubMed ID: 19752504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silver nanoplates and nanowires by a simple chemical reduction method.
    Khan Z; Hussain JI; Kumar S; Hashmi AA
    Colloids Surf B Biointerfaces; 2011 Aug; 86(1):87-92. PubMed ID: 21493047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of colloidal silver nanoparticles trapped in lipid bilayer: effect of lecithin concentration and applied temperature.
    Barani H; Montazer M; Braun HG; Dutschk V
    IET Nanobiotechnol; 2014 Dec; 8(4):282-9. PubMed ID: 25429509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid biological synthesis of silver nanoparticles using plant leaf extracts.
    Song JY; Kim BS
    Bioprocess Biosyst Eng; 2009 Jan; 32(1):79-84. PubMed ID: 18438688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication, characterization of chitosan/nanosilver film and its potential antibacterial application.
    Thomas V; Yallapu MM; Sreedhar B; Bajpai SK
    J Biomater Sci Polym Ed; 2009; 20(14):2129-44. PubMed ID: 19874682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysozyme catalyzes the formation of antimicrobial silver nanoparticles.
    Eby DM; Schaeublin NM; Farrington KE; Hussain SM; Johnson GR
    ACS Nano; 2009 Apr; 3(4):984-94. PubMed ID: 19344124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of silver nanoparticles by chemical reduction method.
    Khan Z; Al-Thabaiti SA; Obaid AY; Al-Youbi AO
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):513-7. PubMed ID: 21050730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmentally sensitive silver nanoparticles of controlled size synthesized with PNIPAM as a nucleating and capping agent.
    Morones JR; Frey W
    Langmuir; 2007 Jul; 23(15):8180-6. PubMed ID: 17590029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional properties of composites containing silver nanoparticles embedded in hyaluronan and hyaluronan-lecithin matrix.
    Khachatryan G; Khachatryan K; Krystyjan M; Krzan M; Khachatryan L
    Int J Biol Macromol; 2020 Apr; 149():417-423. PubMed ID: 32001283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled deposition of silver nanoparticles in mesoporous single- or multilayer thin films: from tuned pore filling to selective spatial location of nanometric objects.
    Fuertes MC; Marchena M; Marchi MC; Wolosiuk A; Soler-Illia GJ
    Small; 2009 Feb; 5(2):272-80. PubMed ID: 19115355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, characterization, surface modification and redox reactions of silver nanoparticles in the presence of tryptophan.
    Jacob JA; Naumov S; Mukherjee T; Kapoor S
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):498-504. PubMed ID: 21741224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers.
    Kong H; Jang J
    Biomacromolecules; 2008 Oct; 9(10):2677-81. PubMed ID: 18771314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration.
    Jung JH; Hwang GB; Lee JE; Bae GN
    Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrathin gold nanoframes through surfactant-free templating of faceted pentagonal silver nanoparticles.
    McEachran M; Keogh D; Pietrobon B; Cathcart N; Gourevich I; Coombs N; Kitaev V
    J Am Chem Soc; 2011 Jun; 133(21):8066-9. PubMed ID: 21557604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A kinetic study of silver nanoparticles formation from paracetamol and silver(I) in aqueous and micellar media.
    Ahmad N; Malik MA; Al-Nowaiser FM; Khan Z
    Colloids Surf B Biointerfaces; 2010 Jun; 78(1):109-14. PubMed ID: 20299193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of silver nanoparticles from Trichoderma species.
    Devi TP; Kulanthaivel S; Kamil D; Borah JL; Prabhakaran N; Srinivasa N
    Indian J Exp Biol; 2013 Jul; 51(7):543-7. PubMed ID: 23898553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.