These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21840690)

  • 81. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape.
    Lu L; Ai K; Ozaki Y
    Langmuir; 2008 Feb; 24(3):1058-63. PubMed ID: 18177060
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Photoinduced phase separation of gold in two-component nanoparticles.
    Métraux GS; Jin R; Mirkin CA
    Small; 2006 Nov; 2(11):1335-9. PubMed ID: 17192983
    [No Abstract]   [Full Text] [Related]  

  • 83. Silver nanoparticles formation using tyrosine in presence cetyltrimethylammonium bromide.
    Zaheer Z; Rafiuddin
    Colloids Surf B Biointerfaces; 2012 Jan; 89():211-5. PubMed ID: 21982217
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Immobilizing silver nanoparticles (SNP) on Musa balbisiana cellulose.
    Gogoi K; Saikia JP; Konwar BK
    Colloids Surf B Biointerfaces; 2013 Feb; 102():136-8. PubMed ID: 23010111
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae.
    Korbekandi H; Mohseni S; Mardani Jouneghani R; Pourhossein M; Iravani S
    Artif Cells Nanomed Biotechnol; 2016; 44(1):235-9. PubMed ID: 25101816
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Thermoresponsive silver/polymer nanohybrids with switchable metal enhanced fluorescence.
    Liu J; Li A; Tang J; Wang R; Kong N; Davis TP
    Chem Commun (Camb); 2012 May; 48(39):4680-2. PubMed ID: 22330937
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Investigating the evolution of drug mediated silver nanoparticles.
    Ghosh S; Anand U; Mukherjee S
    Analyst; 2013 Aug; 138(15):4270-4. PubMed ID: 23748584
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles.
    de Lima R; Seabra AB; Durán N
    J Appl Toxicol; 2012 Nov; 32(11):867-79. PubMed ID: 22696476
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Biofunctionalized silver nanoparticles: advances and prospects.
    Ravindran A; Chandran P; Khan SS
    Colloids Surf B Biointerfaces; 2013 May; 105():342-52. PubMed ID: 23411404
    [TBL] [Abstract][Full Text] [Related]  

  • 90. In situ growth of silver nanoparticles on TEMPO-oxidized jute fibers by microwave heating.
    Cao X; Ding B; Yu J; Al-Deyab SS
    Carbohydr Polym; 2013 Jan; 92(1):571-6. PubMed ID: 23218337
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Positive homotropic allosteric binding of silver(I) ions in multidentate azacalixpyridine macrocycles: effect on the formation and stabilization of silver nanoparticles.
    He X; Xu XB; Wang X; Zhao L
    Chem Commun (Camb); 2013 Aug; 49(64):7153-5. PubMed ID: 23831935
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Effect of model biological media of stability of complex of silver nanoparticles applied onto silicon nitride substrate.
    Afanasiev SA; Tsapko LP; Kurzina IA; Chuhlomina LN; Babokin VE
    Bull Exp Biol Med; 2010 Dec; 150(1):160-4. PubMed ID: 21161077
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Self-assembled silver nanoparticles in a bow-tie antenna configuration.
    Eskelinen AP; Moerland RJ; Kostiainen MA; Törmä P
    Small; 2014 Mar; 10(6):1057-62. PubMed ID: 24659271
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics.
    Zeng J; Zhu C; Tao J; Jin M; Zhang H; Li ZY; Zhu Y; Xia Y
    Angew Chem Int Ed Engl; 2012 Mar; 51(10):2354-8. PubMed ID: 22105984
    [No Abstract]   [Full Text] [Related]  

  • 95. Computational and experimental characterizations of silver nanoparticle-apolipoprotein biocorona.
    Li R; Chen R; Chen P; Wen Y; Ke PC; Cho SS
    J Phys Chem B; 2013 Oct; 117(43):13451-6. PubMed ID: 24073791
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Possible protection of silver nanoparticles against salt by using rhamnolipid.
    Saikia JP; Bharali P; Konwar BK
    Colloids Surf B Biointerfaces; 2013 Apr; 104():330-2. PubMed ID: 23290768
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Spectroscopic study of 3-Hydroxyflavone - protein interaction in lipidic bi-layers immobilized on silver nanoparticles.
    Voicescu M; Ionescu S; Nistor CL
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():1-8. PubMed ID: 27380623
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Stimuli responsive release of metalic nanoparticles on semiconductor substrates.
    Santiago-Cordoba M; Topal Ö; Allara DL; Kalkan AK; Demirel MC
    Langmuir; 2012 Apr; 28(14):5975-80. PubMed ID: 22428723
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry.
    Schubert O; Becker J; Carbone L; Khalavka Y; Provalska T; Zins I; Sönnichsen C
    Nano Lett; 2008 Aug; 8(8):2345-50. PubMed ID: 18590314
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Thermostability and reversibility of silver nanoparticle-protein binding.
    Wang B; Seabrook SA; Nedumpully-Govindan P; Chen P; Yin H; Waddington L; Epa VC; Winkler DA; Kirby JK; Ding F; Ke PC
    Phys Chem Chem Phys; 2015 Jan; 17(3):1728-39. PubMed ID: 25461673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.