BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 21840829)

  • 1. Effects of methyl jasmonate on accumulation of flavonoids in seedlings of common buckwheat (Fagopyrum esculentum Moench).
    Horbowicz M; Wiczkowski W; Koczkodaj D; Saniewski M
    Acta Biol Hung; 2011 Sep; 62(3):265-78. PubMed ID: 21840829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of the effect of methyl jasmonate on pea seedling roots.
    Yakovleva VG; Egorova AM; Tarchevsky IA
    Dokl Biochem Biophys; 2013; 449():90-3. PubMed ID: 23657655
    [No Abstract]   [Full Text] [Related]  

  • 3. [The influence of methyl jasmonate on the growth processes in the pea].
    Ivanova AB; Iarin AIu; Antsygina LL; Grechkin AN
    Tsitologiia; 2002; 44(4):369-73. PubMed ID: 12149781
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Wang A; Liu Y; Li Q; Li X; Zhang X; Kong J; Liu Z; Yang Y; Wang J
    Front Plant Sci; 2023; 14():1279468. PubMed ID: 37885669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of chlorocholine chlorid on phenolic acids accumulation and polyphenols formation of buckwheat plants.
    Sytar O; Borankulova A; Hemmerich I; Rauh C; Smetanska I
    Biol Res; 2014 May; 47(1):19. PubMed ID: 25027783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protoplast Isolation, Culture, and Regeneration in Common and Tartary Buckwheat.
    Zaranek M; Pérez-Pérez R; Malec J; Grzebelus E
    Methods Mol Biol; 2024; 2791():45-56. PubMed ID: 38532091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methyl jasmonate conferred Arsenic tolerance in Thymus kotschyanus by DNA hypomethylation, stimulating terpenoid metabolism, and upregulating two cytochrome P450 monooxygenases.
    Kamali S; Iranbakhsh A; Ebadi M; Oraghi Ardebili Z; Haghighat S
    J Hazard Mater; 2024 Mar; 465():133163. PubMed ID: 38064945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations in chemical composition of common buckwheat (Fagopyrum esculentum Moench) as a result of different environmental conditions.
    Wiśniewska M; Mańkowski DR; Fraś A
    J Sci Food Agric; 2024 Jan; 104(1):286-294. PubMed ID: 37556207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neighbour-induced changes in root exudation patterns of buckwheat results in altered root architecture of redroot pigweed.
    Eroğlu ÇG; Bennett AA; Steininger-Mairinger T; Hann S; Puschenreiter M; Wirth J; Gfeller A
    Sci Rep; 2024 Apr; 14(1):8679. PubMed ID: 38622223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cultivar-dependent and drought-induced modulation of secondary metabolites, adaptative defense in
    Oksana S; Marek K; Marian B; Marek Z
    Physiol Mol Biol Plants; 2023 Oct; 29(10):1605-1618. PubMed ID: 38076767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water Shortage Strongly Alters Formation of Calcium Oxalate Druse Crystals and Leaf Traits in
    Gaberščik A; Grašič M; Vogel-Mikuš K; Germ M; Golob A
    Plants (Basel); 2020 Jul; 9(7):. PubMed ID: 32698521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Embryo Rescue Technique in Buckwheat Fagopyrum esculentum Moench.
    Suvorova G
    Methods Mol Biol; 2024; 2791():89-96. PubMed ID: 38532095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elimination of zero-repeat subunit in allergenic seed protein 13S globulin using the novel allele
    Okada T; Kimura K; Goto N; Katsube-Tanaka T
    Food Chem (Oxf); 2024 Jul; 8():100205. PubMed ID: 38694165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive Embryological Analyses of Common Buckwheat (Fagopyrym esculentum Moench).
    Słomka A; Sychta K; Płażek A
    Methods Mol Biol; 2024; 2791():97-105. PubMed ID: 38532096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic analysis of AGAMOUS sequences reveals the origin of the diploid and tetraploid forms of self-pollinating wild buckwheat, Fagopyrum homotropicum Ohnishi.
    Tomiyoshi M; Yasui Y; Ohsako T; Li CY; Ohnishi O
    Breed Sci; 2012 Sep; 62(3):241-7. PubMed ID: 23226084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of the Light Intensity and Spectrum Influence on Plant Growth and Secondary Metabolites of Common Buckwheat.
    Kula-Maximenko M; Hornyák M; Płażek A
    Methods Mol Biol; 2024; 2791():133-137. PubMed ID: 38532101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell culture models for assessing the effects of bioactive compounds in common buckwheat (
    Borgonovi SM; Iametti S; Speranza AR; Di Nunzio M
    Food Funct; 2024 Mar; 15(6):2799-2813. PubMed ID: 38390666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis and regulation of flavonoids in buckwheat.
    Matsui K; Walker AR
    Breed Sci; 2020 Mar; 70(1):74-84. PubMed ID: 32351306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenolic Determination in Proembryogenic Cell Complexes of Buckwheat Morphogenic Cell Culture with Osmium Tetroxide, Toluidine Blue O Dye, and Iron Chloride.
    Kostyukova YA
    Methods Mol Biol; 2024; 2791():35-43. PubMed ID: 38532090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative Analysis of Metabolome and Transcriptome Reveals the Role of Strigolactones in Wounding-Induced Rice Metabolic Re-Programming.
    Liu L; Li K; Zhou X; Fang C
    Metabolites; 2022 Aug; 12(9):. PubMed ID: 36144193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.