These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 21840861)

  • 1. Exploiting spore-autonomous fluorescent protein expression to quantify meiotic chromosome behaviors in Saccharomyces cerevisiae.
    Thacker D; Lam I; Knop M; Keeney S
    Genetics; 2011 Oct; 189(2):423-39. PubMed ID: 21840861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meiotic chromosome segregation in triploid strains of Saccharomyces cerevisiae.
    St Charles J; Hamilton ML; Petes TD
    Genetics; 2010 Oct; 186(2):537-50. PubMed ID: 20697121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation in crossover frequencies perturb crossover assurance without affecting meiotic chromosome segregation in Saccharomyces cerevisiae.
    Krishnaprasad GN; Anand MT; Lin G; Tekkedil MM; Steinmetz LM; Nishant KT
    Genetics; 2015 Feb; 199(2):399-412. PubMed ID: 25467183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis of mlh3 mutations reveals interactions between crossover promoting factors during meiosis in baker's yeast.
    Sonntag Brown M; Lim E; Chen C; Nishant KT; Alani E
    G3 (Bethesda); 2013 Jan; 3(1):9-22. PubMed ID: 23316435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spore-autonomous fluorescent protein expression identifies meiotic chromosome mis-segregation as the principal cause of hybrid sterility in yeast.
    Rogers DW; McConnell E; Ono J; Greig D
    PLoS Biol; 2018 Nov; 16(11):e2005066. PubMed ID: 30419022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Computational Approach to Estimating Nondisjunction Frequency in Saccharomyces cerevisiae.
    Chu DB; Burgess SM
    G3 (Bethesda); 2016 Jan; 6(3):669-82. PubMed ID: 26747203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competing crossover pathways act during meiosis in Saccharomyces cerevisiae.
    Argueso JL; Wanat J; Gemici Z; Alani E
    Genetics; 2004 Dec; 168(4):1805-16. PubMed ID: 15611158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Approaches to Study Meiosis and Meiosis-Specific Gene Expression in Saccharomyces cerevisiae.
    Kassir Y; Stuart DT
    Methods Mol Biol; 2017; 1471():1-23. PubMed ID: 28349388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput measurement of recombination rates and genetic interference in Saccharomyces cerevisiae.
    Raffoux X; Bourge M; Dumas F; Martin OC; Falque M
    Yeast; 2018 Jun; 35(6):431-442. PubMed ID: 29577404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of roles of Zip1 in meiosis revealed in heterozygous mutants of Saccharomyces cerevisiae.
    Klutstein M; Xaver M; Shemesh R; Zenvirth D; Klein F; Simchen G
    Mol Genet Genomics; 2009 Nov; 282(5):453-62. PubMed ID: 19714362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ESA1 regulates meiotic chromosome axis and crossover frequency via acetylating histone H4.
    Wang Y; Zhai B; Tan T; Yang X; Zhang J; Song M; Tan Y; Yang X; Chu T; Zhang S; Wang S; Zhang L
    Nucleic Acids Res; 2021 Sep; 49(16):9353-9373. PubMed ID: 34417612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput classification of S. cerevisiae tetrads using deep learning.
    Szücs B; Selvan R; Lisby M
    Yeast; 2024 Jul; 41(7):423-436. PubMed ID: 38850080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of homology, size and exchange of the meiotic segregation of model chromosomes in Saccharomyces cerevisiae.
    Ross LO; Rankin S; Shuster MF; Dawson DS
    Genetics; 1996 Jan; 142(1):79-89. PubMed ID: 8770586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-dependent modulation of chromosome segregation in msh4 mutants of budding yeast.
    Chan AC; Borts RH; Hoffmann E
    PLoS One; 2009 Oct; 4(10):e7284. PubMed ID: 19816584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (CA/GT)(n) microsatellites affect homologous recombination during yeast meiosis.
    Gendrel CG; Boulet A; Dutreix M
    Genes Dev; 2000 May; 14(10):1261-8. PubMed ID: 10817760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meiotic crossing over between nonhomologous chromosomes affects chromosome segregation in yeast.
    Jinks-Robertson S; Sayeed S; Murphy T
    Genetics; 1997 May; 146(1):69-78. PubMed ID: 9136001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome-dependent aneuploid formation in Spo11-less meiosis.
    Kawashima Y; Oda AH; Hikida Y; Ohta K
    Genes Cells; 2023 Feb; 28(2):129-148. PubMed ID: 36530025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking chromosome dynamics in live yeast cells: coordinated movement of rDNA homologs and anaphase disassembly of the nucleolus during meiosis.
    Li P; Jin H; Hoang ML; Yu HG
    Chromosome Res; 2011 Nov; 19(8):1013-26. PubMed ID: 22083303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss.
    Chambers SR; Hunter N; Louis EJ; Borts RH
    Mol Cell Biol; 1996 Nov; 16(11):6110-20. PubMed ID: 8887641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of baker's yeast Msh4-Msh5 reveals a threshold crossover level for meiotic viability.
    Nishant KT; Chen C; Shinohara M; Shinohara A; Alani E
    PLoS Genet; 2010 Aug; 6(8):. PubMed ID: 20865162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.