BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 21840980)

  • 1. An extracytoplasmic function sigma factor-mediated cell surface signaling system in Pseudomonas syringae pv. tomato DC3000 regulates gene expression in response to heterologous siderophores.
    Markel E; Maciak C; Butcher BG; Myers CR; Stodghill P; Bao Z; Cartinhour S; Swingle B
    J Bacteriol; 2011 Oct; 193(20):5775-83. PubMed ID: 21840980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AlgU Controls Expression of Virulence Genes in Pseudomonas syringae pv. tomato DC3000.
    Markel E; Stodghill P; Bao Z; Myers CR; Swingle B
    J Bacteriol; 2016 Sep; 198(17):2330-44. PubMed ID: 27325679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca
    Fishman MR; Zhang J; Bronstein PA; Stodghill P; Filiatrault MJ
    J Bacteriol; 2018 Mar; 200(5):. PubMed ID: 29263098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions.
    Lam HN; Chakravarthy S; Wei HL; BuiNguyen H; Stodghill PV; Collmer A; Swingle BM; Cartinhour SW
    PLoS One; 2014; 9(8):e106115. PubMed ID: 25170934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ECF sigma factor, PSPTO_1043, in Pseudomonas syringae pv. tomato DC3000 is induced by oxidative stress and regulates genes involved in oxidative stress response.
    Butcher BG; Bao Z; Wilson J; Stodghill P; Swingle B; Filiatrault M; Schneider D; Cartinhour S
    PLoS One; 2017; 12(7):e0180340. PubMed ID: 28700608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conserved hypothetical protein PSPTO_3957 is essential for virulence in the plant pathogen Pseudomonas syringae pv. tomato DC3000.
    D'Amico K; Filiatrault MJ
    FEMS Microbiol Lett; 2017 Apr; 364(8):. PubMed ID: 28073812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the Fur regulon in Pseudomonas syringae pv. tomato DC3000.
    Butcher BG; Bronstein PA; Myers CR; Stodghill PV; Bolton JJ; Markel EJ; Filiatrault MJ; Swingle B; Gaballa A; Helmann JD; Schneider DJ; Cartinhour SW
    J Bacteriol; 2011 Sep; 193(18):4598-611. PubMed ID: 21784947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CorR regulates multiple components of virulence in Pseudomonas syringae pv. tomato DC3000.
    Sreedharan A; Penaloza-Vazquez A; Kunkel BN; Bender CL
    Mol Plant Microbe Interact; 2006 Jul; 19(7):768-79. PubMed ID: 16838789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of the non-effector members of the HrpL regulon, iaaL and matE, to the virulence of Pseudomonas syringae pv. tomato DC3000 in tomato plants.
    Castillo-Lizardo MG; Aragón IM; Carvajal V; Matas IM; Pérez-Bueno ML; Gallegos MT; Barón M; Ramos C
    BMC Microbiol; 2015 Aug; 15():165. PubMed ID: 26285820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulons of three Pseudomonas syringae pv. tomato DC3000 iron starvation sigma factors.
    Markel E; Butcher BG; Myers CR; Stodghill P; Cartinhour S; Swingle B
    Appl Environ Microbiol; 2013 Jan; 79(2):725-7. PubMed ID: 23124242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Pseudomonas syringae pv. tomato DC3000 PSPTO_0820 multidrug transporter is involved in resistance to plant antimicrobials and bacterial survival during tomato plant infection.
    Santamaría-Hernando S; Senovilla M; González-Mula A; Martínez-García PM; Nebreda S; Rodríguez-Palenzuela P; López-Solanilla E; Rodríguez-Herva JJ
    PLoS One; 2019; 14(6):e0218815. PubMed ID: 31237890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phytopathogen Pseudomonas syringae pv. tomato DC3000 has three high-affinity iron-scavenging systems functional under iron limitation conditions but dispensable for pathogenesis.
    Jones AM; Wildermuth MC
    J Bacteriol; 2011 Jun; 193(11):2767-75. PubMed ID: 21441525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudomonas syringae pv. tomato exploits light signals to optimize virulence and colonization of leaves.
    Santamaría-Hernando S; Rodríguez-Herva JJ; Martínez-García PM; Río-Álvarez I; González-Melendi P; Zamorano J; Tapia C; Rodríguez-Palenzuela P; López-Solanilla E
    Environ Microbiol; 2018 Dec; 20(12):4261-4280. PubMed ID: 30058114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads.
    Swingle B; Thete D; Moll M; Myers CR; Schneider DJ; Cartinhour S
    Mol Microbiol; 2008 May; 68(4):871-89. PubMed ID: 18363796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-seq analysis reveals that an ECF σ factor, AcsS, regulates achromobactin biosynthesis in Pseudomonas syringae pv. syringae B728a.
    Greenwald JW; Greenwald CJ; Philmus BJ; Begley TP; Gross DC
    PLoS One; 2012; 7(4):e34804. PubMed ID: 22529937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PsrA, the Pseudomonas sigma regulator, controls regulators of epiphytic fitness, quorum-sensing signals, and plant interactions in Pseudomonas syringae pv. tomato strain DC3000.
    Chatterjee A; Cui Y; Hasegawa H; Chatterjee AK
    Appl Environ Microbiol; 2007 Jun; 73(11):3684-94. PubMed ID: 17400767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blue-light perception by epiphytic Pseudomonas syringae drives chemoreceptor expression, enabling efficient plant infection.
    Santamaría-Hernando S; Cerna-Vargas JP; Martínez-García PM; de Francisco-de Polanco S; Nebreda S; Rodríguez-Palenzuela P; Rodríguez-Herva JJ; López-Solanilla E
    Mol Plant Pathol; 2020 Dec; 21(12):1606-1619. PubMed ID: 33029921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salicylic acid, yersiniabactin, and pyoverdin production by the model phytopathogen Pseudomonas syringae pv. tomato DC3000: synthesis, regulation, and impact on tomato and Arabidopsis host plants.
    Jones AM; Lindow SE; Wildermuth MC
    J Bacteriol; 2007 Oct; 189(19):6773-86. PubMed ID: 17660289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection.
    Bretz JR; Mock NM; Charity JC; Zeyad S; Baker CJ; Hutcheson SW
    Mol Microbiol; 2003 Jul; 49(2):389-400. PubMed ID: 12828637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemoperception of Specific Amino Acids Controls Phytopathogenicity in Pseudomonas syringae pv. tomato.
    Cerna-Vargas JP; Santamaría-Hernando S; Matilla MA; Rodríguez-Herva JJ; Daddaoua A; Rodríguez-Palenzuela P; Krell T; López-Solanilla E
    mBio; 2019 Oct; 10(5):. PubMed ID: 31575767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.