These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 21841023)
1. Molecular enumeration of an ecologically important cyanophage in a Laurentian Great Lake. Matteson AR; Loar SN; Bourbonniere RA; Wilhelm SW Appl Environ Microbiol; 2011 Oct; 77(19):6772-9. PubMed ID: 21841023 [TBL] [Abstract][Full Text] [Related]
2. High abundances of cyanomyoviruses in marine ecosystems demonstrate ecological relevance. Matteson AR; Rowe JM; Ponsero AJ; Pimentel TM; Boyd PW; Wilhelm SW FEMS Microbiol Ecol; 2013 May; 84(2):223-34. PubMed ID: 23240688 [TBL] [Abstract][Full Text] [Related]
3. Identification of a diagnostic marker to detect freshwater cyanophages of filamentous cyanobacteria. Baker AC; Goddard VJ; Davy J; Schroeder DC; Adams DG; Wilson WH Appl Environ Microbiol; 2006 Sep; 72(9):5713-9. PubMed ID: 16957185 [TBL] [Abstract][Full Text] [Related]
4. Cyanophage diversity, inferred from g20 gene analyses, in the largest natural lake in France, Lake Bourget. Dorigo U; Jacquet S; Humbert JF Appl Environ Microbiol; 2004 Feb; 70(2):1017-22. PubMed ID: 14766584 [TBL] [Abstract][Full Text] [Related]
6. Marine and freshwater cyanophages in a Laurentian Great Lake: evidence from infectivity assays and molecular analyses of g20 genes. Wilhelm SW; Carberry MJ; Eldridge ML; Poorvin L; Saxton MA; Doblin MA Appl Environ Microbiol; 2006 Jul; 72(7):4957-63. PubMed ID: 16820493 [TBL] [Abstract][Full Text] [Related]
7. Temporal dynamics and structure of picocyanobacteria and cyanomyoviruses in two large and deep peri-alpine lakes. Zhong X; Berdjeb L; Jacquet S FEMS Microbiol Ecol; 2013 Nov; 86(2):312-26. PubMed ID: 23772675 [TBL] [Abstract][Full Text] [Related]
8. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Short CM; Suttle CA Appl Environ Microbiol; 2005 Jan; 71(1):480-6. PubMed ID: 15640224 [TBL] [Abstract][Full Text] [Related]
9. Genetic diversity and temporal variation in the cyanophage community infecting marine Synechococcus species in Rhode Island's coastal waters. Marston MF; Sallee JL Appl Environ Microbiol; 2003 Aug; 69(8):4639-47. PubMed ID: 12902252 [TBL] [Abstract][Full Text] [Related]
10. Variations in abundance, genome size, morphology, and functional role of the virioplankton in Lakes Annecy and Bourget over a 1-year period. Zhong X; Ram AS; Colombet J; Jacquet S Microb Ecol; 2014 Jan; 67(1):66-82. PubMed ID: 24253662 [TBL] [Abstract][Full Text] [Related]
11. Seasonal variations in virus-host populations in Norwegian coastal waters: focusing on the cyanophage community infecting marine Synechococcus spp. Sandaa RA; Larsen A Appl Environ Microbiol; 2006 Jul; 72(7):4610-8. PubMed ID: 16820451 [TBL] [Abstract][Full Text] [Related]
12. Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20. Zhong Y; Chen F; Wilhelm SW; Poorvin L; Hodson RE Appl Environ Microbiol; 2002 Apr; 68(4):1576-84. PubMed ID: 11916671 [TBL] [Abstract][Full Text] [Related]
13. Prevalence of viral photosynthetic and capsid protein genes from cyanophages in two large and deep perialpine lakes. Zhong X; Jacquet S Appl Environ Microbiol; 2013 Dec; 79(23):7169-78. PubMed ID: 24038692 [TBL] [Abstract][Full Text] [Related]
14. Metatranscriptomic analysis reveals dissimilarity in viral community activity between an ice-free and ice-covered winter in Lake Erie. Denison ER; Zepernick BN; McKay RML; Wilhelm SW mSystems; 2024 Jul; 9(7):e0075324. PubMed ID: 38940524 [TBL] [Abstract][Full Text] [Related]
15. Population dynamics and diversity of viruses, bacteria and phytoplankton in a shallow eutrophic lake. Tijdens M; Hoogveld HL; Kamst-van Agterveld MP; Simis SG; Baudoux AC; Laanbroek HJ; Gons HJ Microb Ecol; 2008 Jul; 56(1):29-42. PubMed ID: 17924158 [TBL] [Abstract][Full Text] [Related]
16. Occurrence of a sequence in marine cyanophages similar to that of T4 g20 and its application to PCR-based detection and quantification techniques. Fuller NJ; Wilson WH; Joint IR; Mann NH Appl Environ Microbiol; 1998 Jun; 64(6):2051-60. PubMed ID: 9603813 [TBL] [Abstract][Full Text] [Related]
17. Viruses in subarctic lakes and their impact on benthic and pelagic bacteria. Säwström C; Ask J; Karlsson J FEMS Microbiol Ecol; 2009 Dec; 70(3):471-82. PubMed ID: 19732143 [TBL] [Abstract][Full Text] [Related]
18. Abundance, distribution, and diversity of viruses in alkaline, hypersaline Mono Lake, California. Jiang S; Steward G; Jellison R; Chu W; Choi S Microb Ecol; 2004 Jan; 47(1):9-17. PubMed ID: 15259265 [TBL] [Abstract][Full Text] [Related]
19. Quantification of T4-Like and T7-Like Cyanophages Using the Polony Method Show They Are Significant Members of the Virioplankton in the North Pacific Subtropical Gyre. Goldin S; Hulata Y; Baran N; Lindell D Front Microbiol; 2020; 11():1210. PubMed ID: 32612586 [TBL] [Abstract][Full Text] [Related]
20. Identification of cyanophage Ma-LBP and infection of the cyanobacterium Microcystis aeruginosa from an Australian subtropical lake by the virus. Tucker S; Pollard P Appl Environ Microbiol; 2005 Feb; 71(2):629-35. PubMed ID: 15691911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]