These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 21841085)

  • 1. There is room for selection in a small local pig breed when using optimum contribution selection: a simulation study.
    Gourdine JL; Sørensen AC; Rydhmer L
    J Anim Sci; 2012 Jan; 90(1):76-84. PubMed ID: 21841085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient selection against categorically scored hip dysplasia in dogs is possible using best linear unbiased prediction and optimum contribution selection: a simulation study.
    Malm S; Sørensen AC; Fikse WF; Strandberg E
    J Anim Breed Genet; 2013 Apr; 130(2):154-64. PubMed ID: 23496016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic selection for two traits in a maternal pig breeding scheme.
    Lillehammer M; Meuwissen TH; Sonesson AK
    J Anim Sci; 2013 Jul; 91(7):3079-87. PubMed ID: 23658351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimum contribution selection using traditional best linear unbiased prediction and genomic breeding values in aquaculture breeding schemes.
    Nielsen HM; Sonesson AK; Meuwissen TH
    J Anim Sci; 2011 Mar; 89(3):630-8. PubMed ID: 21036937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimised parent selection and minimum inbreeding mating in small aquaculture breeding schemes: a simulation study.
    Hely FS; Amer PR; Walker SP; Symonds JE
    Animal; 2013 Jan; 7(1):1-10. PubMed ID: 23031385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementation of Optimum Contributions selection in endangered local breeds: the case of the Menorca Horse population.
    Solé M; Valera M; Gómez MD; Cervantes I; Fernández J
    J Anim Breed Genet; 2013 Jun; 130(3):218-26. PubMed ID: 23679947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential benefits of genomic selection on genetic gain of small ruminant breeding programs.
    Shumbusho F; Raoul J; Astruc JM; Palhiere I; Elsen JM
    J Anim Sci; 2013 Aug; 91(8):3644-57. PubMed ID: 23736059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency of genomic selection in a purebred pig male line.
    Tribout T; Larzul C; Phocas F
    J Anim Sci; 2012 Dec; 90(12):4164-76. PubMed ID: 22859761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic diversity in an indigenous horse breed: implications for mating strategies and the control of future inbreeding.
    Hasler H; Flury C; Menet S; Haase B; Leeb T; Simianer H; Poncet PA; Rieder S
    J Anim Breed Genet; 2011 Oct; 128(5):394-406. PubMed ID: 21906185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal strategies for the use of genomic selection in dairy cattle breeding programs.
    Wensch-Dorendorf M; Yin T; Swalve HH; König S
    J Dairy Sci; 2011 Aug; 94(8):4140-51. PubMed ID: 21787949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Most of the benefits from genomic selection can be realized by genotyping a small proportion of available selection candidates.
    Henryon M; Berg P; Ostersen T; Nielsen B; Sørensen AC
    J Anim Sci; 2012 Dec; 90(13):4681-9. PubMed ID: 23087087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From phenotyping towards breeding strategies: using in vivo indicator traits and genetic markers to improve meat quality in an endangered pig breed.
    Biermann AD; Yin T; König von Borstel UU; Rübesam K; Kuhn B; König S
    Animal; 2015 Jun; 9(6):919-27. PubMed ID: 25690016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters.
    Muir WM
    J Anim Breed Genet; 2007 Dec; 124(6):342-55. PubMed ID: 18076471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of population size of performance test on short-term selection result of sire line].
    Zhang H; Li JQ; Wang C; Liu XH; Chen YS
    Yi Chuan Xue Bao; 2005 Jul; 32(7):696-703. PubMed ID: 16078737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced optimum contribution selection as a tool to improve regional cattle breeds: a feasibility study for Vorderwald cattle.
    Kohl S; Wellmann R; Herold P
    Animal; 2020 Jan; 14(1):1-12. PubMed ID: 31296274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic selection for maternal traits in pigs.
    Lillehammer M; Meuwissen TH; Sonesson AK
    J Anim Sci; 2011 Dec; 89(12):3908-16. PubMed ID: 21841086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic selection in admixed and crossbred populations.
    Toosi A; Fernando RL; Dekkers JC
    J Anim Sci; 2010 Jan; 88(1):32-46. PubMed ID: 19749023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short communication: Genomic selection using a multi-breed, across-country reference population.
    Pryce JE; Gredler B; Bolormaa S; Bowman PJ; Egger-Danner C; Fuerst C; Emmerling R; Sölkner J; Goddard ME; Hayes BJ
    J Dairy Sci; 2011 May; 94(5):2625-30. PubMed ID: 21524555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel optimum contribution selection methods accounting for conflicting objectives in breeding programs for livestock breeds with historical migration.
    Wang Y; Bennewitz J; Wellmann R
    Genet Sel Evol; 2017 May; 49(1):45. PubMed ID: 28499352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parental selection, number of breeding populations, and size of each population in inbred development.
    Bernardo R
    Theor Appl Genet; 2003 Nov; 107(7):1252-6. PubMed ID: 12928779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.