These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21841121)

  • 1. Candida albicans SRR1, a putative two-component response regulator gene, is required for stress adaptation, morphogenesis, and virulence.
    Desai C; Mavrianos J; Chauhan N
    Eukaryot Cell; 2011 Oct; 10(10):1370-4. PubMed ID: 21841121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of Candida albicans.
    Leach MD; Stead DA; Argo E; MacCallum DM; Brown AJ
    Mol Microbiol; 2011 Mar; 79(6):1574-93. PubMed ID: 21269335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Candida albicans phosphatase Inp51p interacts with the EH domain protein Irs4p, regulates phosphatidylinositol-4,5-bisphosphate levels and influences hyphal formation, the cell integrity pathway and virulence.
    Badrane H; Nguyen MH; Cheng S; Kumar V; Derendorf H; Iczkowski KA; Clancy CJ
    Microbiology (Reading); 2008 Nov; 154(Pt 11):3296-3308. PubMed ID: 18957583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of ORF19.1725, a novel gene contributing to the white cell pheromone response and virulence-associated functions in Candida albicans.
    Deng FS; Lin CH
    Virulence; 2018 Dec; 9(1):866-878. PubMed ID: 29726301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model.
    Spiering MJ; Moran GP; Chauvel M; Maccallum DM; Higgins J; Hokamp K; Yeomans T; d'Enfert C; Coleman DC; Sullivan DJ
    Eukaryot Cell; 2010 Feb; 9(2):251-65. PubMed ID: 20023067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Candida albicans RFX2 encodes a DNA binding protein involved in DNA damage responses, morphogenesis, and virulence.
    Hao B; Clancy CJ; Cheng S; Raman SB; Iczkowski KA; Nguyen MH
    Eukaryot Cell; 2009 Apr; 8(4):627-39. PubMed ID: 19252121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Candida morphogenesis and host-pathogen interactions.
    Whiteway M; Oberholzer U
    Curr Opin Microbiol; 2004 Aug; 7(4):350-7. PubMed ID: 15358253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Niche-specific requirement for hyphal wall protein 1 in virulence of Candida albicans.
    Staab JF; Datta K; Rhee P
    PLoS One; 2013; 8(11):e80842. PubMed ID: 24260489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo systematic analysis of Candida albicans Zn2-Cys6 transcription factors mutants for mice organ colonization.
    Vandeputte P; Ischer F; Sanglard D; Coste AT
    PLoS One; 2011; 6(10):e26962. PubMed ID: 22073120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiologic expression of the Candida albicans pescadillo homolog is required for virulence in a murine model of hematogenously disseminated candidiasis.
    Uppuluri P; Chaturvedi AK; Jani N; Pukkila-Worley R; Monteagudo C; Mylonakis E; Köhler JR; Lopez Ribot JL
    Eukaryot Cell; 2012 Dec; 11(12):1552-6. PubMed ID: 23104566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory networks controlling Candida albicans morphogenesis.
    Brown AJ; Gow NA
    Trends Microbiol; 1999 Aug; 7(8):333-8. PubMed ID: 10431207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence.
    Banerjee M; Thompson DS; Lazzell A; Carlisle PL; Pierce C; Monteagudo C; López-Ribot JL; Kadosh D
    Mol Biol Cell; 2008 Apr; 19(4):1354-65. PubMed ID: 18216277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SKN7 of Candida albicans: mutant construction and phenotype analysis.
    Singh P; Chauhan N; Ghosh A; Dixon F; Calderone R
    Infect Immun; 2004 Apr; 72(4):2390-4. PubMed ID: 15039366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudohyphal regulation by the transcription factor Rfg1p in Candida albicans.
    Cleary IA; Mulabagal P; Reinhard SM; Yadev NP; Murdoch C; Thornhill MH; Lazzell AL; Monteagudo C; Thomas DP; Saville SP
    Eukaryot Cell; 2010 Sep; 9(9):1363-73. PubMed ID: 20656914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoregulation of Nap1 plays a role in septin ring dynamics and morphogenesis in Candida albicans.
    Huang ZX; Zhao P; Zeng GS; Wang YM; Sudbery I; Wang Y
    mBio; 2014 Feb; 5(1):e00915-13. PubMed ID: 24496790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The protein kinase Ire1 impacts pathogenicity of Candida albicans by regulating homeostatic adaptation to endoplasmic reticulum stress.
    Sircaik S; Román E; Bapat P; Lee KK; Andes DR; Gow NAR; Nobile CJ; Pla J; Panwar SL
    Cell Microbiol; 2021 May; 23(5):e13307. PubMed ID: 33403715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of Cch1 and Mid1 in morphogenesis, oxidative stress response and virulence in Candida albicans.
    Yu Q; Wang H; Cheng X; Xu N; Ding X; Xing L; Li M
    Mycopathologia; 2012 Dec; 174(5-6):359-69. PubMed ID: 22886468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Requirement for Candida albicans Sun41 in biofilm formation and virulence.
    Norice CT; Smith FJ; Solis N; Filler SG; Mitchell AP
    Eukaryot Cell; 2007 Nov; 6(11):2046-55. PubMed ID: 17873081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Candida albicans ISW2 Regulates Chlamydospore Suspensor Cell Formation and Virulence In Vivo in a Mouse Model of Disseminated Candidiasis.
    Navarathna DH; Pathirana RU; Lionakis MS; Nickerson KW; Roberts DD
    PLoS One; 2016; 11(10):e0164449. PubMed ID: 27727302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blocking two-component signalling enhances Candida albicans virulence and reveals adaptive mechanisms that counteract sustained SAPK activation.
    Day AM; Smith DA; Ikeh MA; Haider M; Herrero-de-Dios CM; Brown AJ; Morgan BA; Erwig LP; MacCallum DM; Quinn J
    PLoS Pathog; 2017 Jan; 13(1):e1006131. PubMed ID: 28135328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.