These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21842052)

  • 1. Water adsorption around oxalic acid aggregates: a molecular dynamics simulation of water nucleation on organic aerosols.
    Darvas M; Picaud S; Jedlovszky P
    Phys Chem Chem Phys; 2011 Nov; 13(44):19830-9. PubMed ID: 21842052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation of the adsorption of oxalic acid on an ice surface.
    Darvas M; Picaud S; Jedlovszky P
    Chemphyschem; 2010 Dec; 11(18):3971-9. PubMed ID: 20830727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of the water adsorption around malonic acid aerosol models.
    Darvas M; Picaud S; Jedlovszky P
    Phys Chem Chem Phys; 2013 Jul; 15(26):10942-51. PubMed ID: 23702947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamic simulation of dicarboxylic acid coated aqueous aerosol: structure and processing of water vapor.
    Ma X; Chakraborty P; Henz BJ; Zachariah MR
    Phys Chem Chem Phys; 2011 May; 13(20):9374-84. PubMed ID: 21479309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles.
    Koehler KA; DeMott PJ; Kreidenweis SM; Popovicheva OB; Petters MD; Carrico CM; Kireeva ED; Khokhlova TD; Shonija NK
    Phys Chem Chem Phys; 2009 Sep; 11(36):7906-20. PubMed ID: 19727498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.
    Herich H; Tritscher T; Wiacek A; Gysel M; Weingartner E; Lohmann U; Baltensperger U; Cziczo DJ
    Phys Chem Chem Phys; 2009 Sep; 11(36):7804-9. PubMed ID: 19727486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of small aerosol particles on the properties of water and ice clouds.
    Choularton TW; Bower KN; Weingartner E; Crawford I; Coe H; Gallagher MW; Flynn M; Crosier J; Connolly P; Targino A; Alfarra MR; Baltensperger U; Sjogren S; Verheggen B; Cozic J; Gysel M
    Faraday Discuss; 2008; 137():205-22; discussion 297-318. PubMed ID: 18214105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.
    Adler G; Koop T; Haspel C; Taraniuk I; Moise T; Koren I; Heiblum RH; Rudich Y
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20414-9. PubMed ID: 24297908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable sulphate clusters as a source of new atmospheric particles.
    Kulmala M; Pirjola L; Makela JM
    Nature; 2000 Mar; 404(6773):66-9. PubMed ID: 10716441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation.
    Tang M; Cziczo DJ; Grassian VH
    Chem Rev; 2016 Apr; 116(7):4205-59. PubMed ID: 27015126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water and formic acid aggregates: a molecular dynamics study.
    Vardanega D; Picaud S
    J Chem Phys; 2014 Sep; 141(10):104701. PubMed ID: 25217941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ice nucleation by particles immersed in supercooled cloud droplets.
    Murray BJ; O'Sullivan D; Atkinson JD; Webb ME
    Chem Soc Rev; 2012 Oct; 41(19):6519-54. PubMed ID: 22932664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.
    Braham RR
    Science; 1959 Jan; 129(3342):123-9. PubMed ID: 17745322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and physical characterisation of low clouds: results from the FEBUKO ground-based cloud experiment.
    Acker K; Wieprecht W; Möller D
    Arh Hig Rada Toksikol; 2003 Dec; 54(4):231-8. PubMed ID: 14994644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water adsorption on hydrophilic and hydrophobic self-assembled monolayers as proxies for atmospheric surfaces. A grand canonical Monte Carlo simulation study.
    Szori M; Jedlovszky P; Roeselová M
    Phys Chem Chem Phys; 2010 May; 12(18):4604-16. PubMed ID: 20428540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sticking coefficient and processing of water vapor on organic-coated nanoaerosols.
    Chakraborty P; Zachariah MR
    J Phys Chem A; 2008 Feb; 112(5):966-72. PubMed ID: 18193845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameterizations for ice nucleation in biological and atmospheric systems.
    Koop T; Zobrist B
    Phys Chem Chem Phys; 2009 Dec; 11(46):10839-50. PubMed ID: 19924318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics Simulations of the Interaction between Water Molecules and Aggregates of Acetic or Propionic Acid Molecules.
    Radola B; Picaud S; Vardanega D; Jedlovszky P
    J Phys Chem B; 2015 Dec; 119(51):15662-74. PubMed ID: 26601716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.