These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 21842070)
1. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Nam J; Lim H; Kim D; Shin S Lab Chip; 2011 Oct; 11(19):3361-4. PubMed ID: 21842070 [TBL] [Abstract][Full Text] [Related]
2. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid. Nam J; Lim H; Kim D; Jung H; Shin S Lab Chip; 2012 Apr; 12(7):1347-54. PubMed ID: 22334376 [TBL] [Abstract][Full Text] [Related]
3. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Shi J; Huang H; Stratton Z; Huang Y; Huang TJ Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400 [TBL] [Abstract][Full Text] [Related]
4. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. VanDelinder V; Groisman A Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639 [TBL] [Abstract][Full Text] [Related]
7. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
8. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Chen X; Cui D; Liu C; Li H; Chen J Anal Chim Acta; 2007 Feb; 584(2):237-43. PubMed ID: 17386610 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood. Li M; Ku DN; Forest CR Lab Chip; 2012 Apr; 12(7):1355-62. PubMed ID: 22358184 [TBL] [Abstract][Full Text] [Related]
11. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications. Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383 [TBL] [Abstract][Full Text] [Related]
12. Design considerations for a microfluidic device to quantify the platelet adhesion to collagen at physiological shear rates. Sarvepalli DP; Schmidtke DW; Nollert MU Ann Biomed Eng; 2009 Jul; 37(7):1331-41. PubMed ID: 19440840 [TBL] [Abstract][Full Text] [Related]
13. Design and simulation of a microfluidic device for acoustic cell separation. Shamloo A; Boodaghi M Ultrasonics; 2018 Mar; 84():234-243. PubMed ID: 29175517 [TBL] [Abstract][Full Text] [Related]
14. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. Evander M; Johansson L; Lilliehorn T; Piskur J; Lindvall M; Johansson S; Almqvist M; Laurell T; Nilsson J Anal Chem; 2007 Apr; 79(7):2984-91. PubMed ID: 17313183 [TBL] [Abstract][Full Text] [Related]
15. Effective hydrodynamic shaping of sample streams in a microfluidic parallel-plate flow-assay device: matching whole blood dynamic viscosity. O'Brien S; Kent NJ; Lucitt M; Ricco AJ; McAtamney C; Kenny D; Meade G IEEE Trans Biomed Eng; 2012 Feb; 59(2):374-82. PubMed ID: 22020664 [TBL] [Abstract][Full Text] [Related]
16. Polybetaine modification of PDMS microfluidic devices to resist thrombus formation in whole blood. Zhang Z; Borenstein J; Guiney L; Miller R; Sukavaneshvar S; Loose C Lab Chip; 2013 May; 13(10):1963-8. PubMed ID: 23563730 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic devices for size-dependent separation of liver cells. Yamada M; Kano K; Tsuda Y; Kobayashi J; Yamato M; Seki M; Okano T Biomed Microdevices; 2007 Oct; 9(5):637-45. PubMed ID: 17530413 [TBL] [Abstract][Full Text] [Related]
18. Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis. Urbansky A; Ohlsson P; Lenshof A; Garofalo F; Scheding S; Laurell T Sci Rep; 2017 Dec; 7(1):17161. PubMed ID: 29215046 [TBL] [Abstract][Full Text] [Related]
19. Magnetic separation of malaria-infected red blood cells in various developmental stages. Nam J; Huang H; Lim H; Lim C; Shin S Anal Chem; 2013 Aug; 85(15):7316-23. PubMed ID: 23815099 [TBL] [Abstract][Full Text] [Related]
20. Particle sorting using a porous membrane in a microfluidic device. Wei H; Chueh BH; Wu H; Hall EW; Li CW; Schirhagl R; Lin JM; Zare RN Lab Chip; 2011 Jan; 11(2):238-45. PubMed ID: 21057685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]