These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 21842084)
1. Patterning the differentiation of C2C12 skeletal myoblasts. Bajaj P; Reddy B; Millet L; Wei C; Zorlutuna P; Bao G; Bashir R Integr Biol (Camb); 2011 Sep; 3(9):897-909. PubMed ID: 21842084 [TBL] [Abstract][Full Text] [Related]
2. A quick, simple and unbiased method to quantify C2C12 myogenic differentiation. Veliça P; Bunce CM Muscle Nerve; 2011 Sep; 44(3):366-70. PubMed ID: 21996796 [TBL] [Abstract][Full Text] [Related]
3. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure. Wang PY; Yu HT; Tsai WB Biotechnol Bioeng; 2010 Jun; 106(2):285-94. PubMed ID: 20148416 [TBL] [Abstract][Full Text] [Related]
4. Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives. Shimizu K; Fujita H; Nagamori E Biotechnol Bioeng; 2009 Jun; 103(3):631-8. PubMed ID: 19189396 [TBL] [Abstract][Full Text] [Related]
5. Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds. Ricotti L; Polini A; Genchi GG; Ciofani G; Iandolo D; Vazão H; Mattoli V; Ferreira L; Menciassi A; Pisignano D Biomed Mater; 2012 Jun; 7(3):035010. PubMed ID: 22477772 [TBL] [Abstract][Full Text] [Related]
6. Modulation of alignment and differentiation of skeletal myoblasts by biomimetic materials. Palamà IE; Coluccia AM; Gigli G; Riehle M Integr Biol (Camb); 2012 Oct; 4(10):1299-309. PubMed ID: 22899167 [TBL] [Abstract][Full Text] [Related]
7. 3-D in vitro model of early skeletal muscle development. Cheema U; Yang SY; Mudera V; Goldspink GG; Brown RA Cell Motil Cytoskeleton; 2003 Mar; 54(3):226-36. PubMed ID: 12589681 [TBL] [Abstract][Full Text] [Related]
8. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts. Ito A; Yamamoto M; Ikeda K; Sato M; Kawabe Y; Kamihira M J Biosci Bioeng; 2015 May; 119(5):596-603. PubMed ID: 25454061 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle. Ohtake Y; Tojo H; Seiki M J Cell Sci; 2006 Sep; 119(Pt 18):3822-32. PubMed ID: 16926191 [TBL] [Abstract][Full Text] [Related]
10. Surface and inner cell behaviour along skeletal muscle cell in vitro differentiation. Curci R; Battistelli M; Burattini S; D'Emilio A; Ferri P; Lattanzi D; Ciuffoli S; Ambrogini P; Cuppini R; Falcieri E Micron; 2008 Oct; 39(7):843-51. PubMed ID: 18337109 [TBL] [Abstract][Full Text] [Related]
11. Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts. Watanabe TM; Higuchi S; Kawauchi K; Tsukasaki Y; Ichimura T; Fujita H Biochem Biophys Res Commun; 2012 Feb; 418(4):742-7. PubMed ID: 22306010 [TBL] [Abstract][Full Text] [Related]
12. Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Fujita H; Nedachi T; Kanzaki M Exp Cell Res; 2007 May; 313(9):1853-65. PubMed ID: 17425954 [TBL] [Abstract][Full Text] [Related]
13. PDZRN3 (LNX3, SEMCAP3) is required for the differentiation of C2C12 myoblasts into myotubes. Ko JA; Kimura Y; Matsuura K; Yamamoto H; Gondo T; Inui M J Cell Sci; 2006 Dec; 119(Pt 24):5106-13. PubMed ID: 17118964 [TBL] [Abstract][Full Text] [Related]
14. Micropatterned polyelectrolyte nanofilms promote alignment and myogenic differentiation of C2C12 cells in standard growth media. Palamà IE; D'Amone S; Coluccia AM; Gigli G Biotechnol Bioeng; 2013 Feb; 110(2):586-96. PubMed ID: 22886558 [TBL] [Abstract][Full Text] [Related]
15. CD36 is required for myoblast fusion during myogenic differentiation. Park SY; Yun Y; Kim IS Biochem Biophys Res Commun; 2012 Nov; 427(4):705-10. PubMed ID: 23036201 [TBL] [Abstract][Full Text] [Related]
16. Differential effect of BMP4 on NIH/3T3 and C2C12 cells: implications for endochondral bone formation. Li G; Peng H; Corsi K; Usas A; Olshanski A; Huard J J Bone Miner Res; 2005 Sep; 20(9):1611-23. PubMed ID: 16059633 [TBL] [Abstract][Full Text] [Related]
17. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts. Eom YW; Lee JE; Yang MS; Jang IK; Kim HE; Lee DH; Kim YJ; Park WJ; Kong JH; Shim KY; Lee JI; Kim HS Biochem Biophys Res Commun; 2011 Apr; 408(1):167-73. PubMed ID: 21473854 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of miR-214 expression represses proliferation and differentiation of C2C12 myoblasts. Feng Y; Cao JH; Li XY; Zhao SH Cell Biochem Funct; 2011 Jul; 29(5):378-83. PubMed ID: 21520152 [TBL] [Abstract][Full Text] [Related]
19. TIEG1 negatively controls the myoblast pool indispensable for fusion during myogenic differentiation of C2C12 cells. Miyake M; Hayashi S; Iwasaki S; Uchida T; Watanabe K; Ohwada S; Aso H; Yamaguchi T J Cell Physiol; 2011 Apr; 226(4):1128-36. PubMed ID: 20945337 [TBL] [Abstract][Full Text] [Related]
20. Simple micropatterning method for enhancing fusion efficiency and responsiveness to electrical stimulation of C2C12 myotubes. Takayama Y; Wagatsuma A; Hoshino T; Mabuchi K Biotechnol Prog; 2015; 31(1):220-5. PubMed ID: 25311428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]