These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21842088)

  • 21. Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property.
    Yao WT; Yu SH; Liu SJ; Chen JP; Liu XM; Li FQ
    J Phys Chem B; 2006 Jun; 110(24):11704-10. PubMed ID: 16800466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel "green" synthesis of starch-capped CdSe nanostructures.
    Oluwafemi OS
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):382-6. PubMed ID: 19577905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities.
    Li B; Xu Y; Rong G; Jing M; Xie Y
    Nanotechnology; 2006 May; 17(10):2560-6. PubMed ID: 21727505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of urchin-like VO2 nanostructures composed of radially aligned nanobelts and their disassembly.
    Li G; Chao K; Zhang C; Zhang Q; Peng H; Chen K
    Inorg Chem; 2009 Feb; 48(3):1168-72. PubMed ID: 19125670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Room temperature, template-free synthesis of BiOI hierarchical structures: visible-light photocatalytic and electrochemical hydrogen storage properties.
    Lei Y; Wang G; Song S; Fan W; Pang M; Tang J; Zhang H
    Dalton Trans; 2010 Apr; 39(13):3273-8. PubMed ID: 20449457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures.
    Wang Q; Wen Z; Li J
    Inorg Chem; 2006 Aug; 45(17):6944-9. PubMed ID: 16903753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of additives in the electrodeposition of nanostructured Eu3+/ZnO films for photoluminescent devices.
    Li GR; Dawa CR; Lu XH; Yu XL; Tong YX
    Langmuir; 2009 Feb; 25(4):2378-84. PubMed ID: 19199740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tailoring CuO nanostructures for enhanced photocatalytic property.
    Liu J; Jin J; Deng Z; Huang SZ; Hu ZY; Wang L; Wang C; Chen LH; Li Y; Van Tendeloo G; Su BL
    J Colloid Interface Sci; 2012 Oct; 384(1):1-9. PubMed ID: 22818959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organic solvent-induced controllable crystallization of the inorganic salt Na3[Au(SO3)2] into ultralong nanobelts and hierarchical microstructures of nanowires.
    Liu S; Tian J; Wang L; Li H; Sun X
    Nanoscale; 2011 Apr; 3(4):1553-7. PubMed ID: 21283868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defect-pit-assisted growth of GaN nanostructures: nanowires, nanorods and nanobelts.
    Xue S; Zhang X; Huang R; Zhuang H; Xue C
    Dalton Trans; 2008 Aug; (32):4296-302. PubMed ID: 18682869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surfactant-assisted synthesis and characterization of SrCrO4 nanostructures.
    Di C; Tang K; Zhang S; Zheng H; Qian Y
    J Nanosci Nanotechnol; 2006 Mar; 6(3):738-42. PubMed ID: 16573130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. D-penicillamine assisted hydrothermal synthesis of Bi2S3 nanoflowers and their electrochemical application.
    Zhang M; Chen DJ; Wang RZ; Feng JJ; Bai Z; Wang AJ
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3980-5. PubMed ID: 23910304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coalescence of nanobranches: a new growth mechanism for single crystal nanobelts.
    Yang W; Xie Z; Miao H; Zhang L; An L
    J Phys Chem B; 2006 Mar; 110(9):3969-72. PubMed ID: 16509684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Morphology-tuned wurtzite-type ZnS nanobelts.
    Wang Z; Daemen LL; Zhao Y; Zha CS; Downs RT; Wang X; Wang ZL; Hemley RJ
    Nat Mater; 2005 Dec; 4(12):922-7. PubMed ID: 16284620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes.
    Deng H; Wang J; Peng Q; Wang X; Li Y
    Chemistry; 2005 Nov; 11(22):6519-24. PubMed ID: 16092143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method.
    Li Y; Wang J; Zhang Y; Banis MN; Liu J; Geng D; Li R; Sun X
    J Colloid Interface Sci; 2012 Mar; 369(1):123-8. PubMed ID: 22221341
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solution-phase synthesis and high photocatalytic activity of wurtzite ZnSe ultrathin nanobelts: a general route to 1D semiconductor nanostructured materials.
    Xiong S; Xi B; Wang C; Xi G; Liu X; Qian Y
    Chemistry; 2007; 13(28):7926-32. PubMed ID: 17616961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphology-controlled synthesis of ZnO nanostructures by a simple round-to-round metal vapor deposition route.
    Shen G; Bando Y; Chen D; Liu B; Zhi C; Golberg D
    J Phys Chem B; 2006 Mar; 110(9):3973-8. PubMed ID: 16509685
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlled hydrothermal synthesis and growth mechanism of various nanostructured films of copper and silver tellurides.
    Zhang L; Ai Z; Jia F; Liu L; Hu X; Yu JC
    Chemistry; 2006 May; 12(15):4185-90. PubMed ID: 16521142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The facile synthesis of nickel silicide nanobelts and nanosheets and their application in electrochemical energy storage.
    Zhang HL; Li F; Liu C; Cheng HM
    Nanotechnology; 2008 Apr; 19(16):165606. PubMed ID: 21825650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.