BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 21842105)

  • 21. Raman characterization of thermal conduction in transparent carbon nanotube films.
    Kim D; Zhu L; Han CS; Kim JH; Baik S
    Langmuir; 2011 Dec; 27(23):14532-8. PubMed ID: 22004446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density.
    Marconnet AM; Yamamoto N; Panzer MA; Wardle BL; Goodson KE
    ACS Nano; 2011 Jun; 5(6):4818-25. PubMed ID: 21598962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A facile route to isotropic conductive nanocomposites by direct polymer infiltration of carbon nanotube sponges.
    Gui X; Li H; Zhang L; Jia Y; Liu L; Li Z; Wei J; Wang K; Zhu H; Tang Z; Wu D; Cao A
    ACS Nano; 2011 Jun; 5(6):4276-83. PubMed ID: 21591806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction stresses in carbon nanotube-polymer nanocomposites.
    Rahmat M; Das K; Hubert P
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3425-31. PubMed ID: 21805984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon Nanotube Nanocomposites with Highly Enhanced Strength and Conductivity for Flexible Electric Circuits.
    Hwang JY; Kim HS; Kim JH; Shin US; Lee SH
    Langmuir; 2015 Jul; 31(28):7844-51. PubMed ID: 26107468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly conducting and flexible few-walled carbon nanotube thin film.
    Kumar NA; Jeon IY; Sohn GJ; Jain R; Kumar S; Baek JB
    ACS Nano; 2011 Mar; 5(3):2324-31. PubMed ID: 21370892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline.
    Hu W; Chen S; Yang Z; Liu L; Wang H
    J Phys Chem B; 2011 Jul; 115(26):8453-7. PubMed ID: 21671578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced sensitivity for biosensors: multiple functions of DNA-wrapped single-walled carbon nanotubes in self-doped polyaniline nanocomposites.
    Ma Y; Ali SR; Dodoo AS; He H
    J Phys Chem B; 2006 Aug; 110(33):16359-65. PubMed ID: 16913764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multifunctional role of an ionic liquid in melt-blended poly(methyl methacrylate)/ multi-walled carbon nanotube nanocomposites.
    Zhao L; Li Y; Cao X; You J; Dong W
    Nanotechnology; 2012 Jun; 23(25):255702. PubMed ID: 22652559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A study on the interaction of single-walled carbon nanotubes (SWCNTs) and polystyrene (PS) at the interface in SWCNT-PS nanocomposites using tip-enhanced Raman spectroscopy.
    Yan X; Suzuki T; Kitahama Y; Sato H; Itoh T; Ozaki Y
    Phys Chem Chem Phys; 2013 Dec; 15(47):20618-24. PubMed ID: 24186236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Surfactant Type and Sonication Energy on the Electrical Conductivity Properties of Nanocellulose-CNT Nanocomposite Films.
    Siljander S; Keinänen P; Räty A; Ramakrishnan KR; Tuukkanen S; Kunnari V; Harlin A; Vuorinen J; Kanerva M
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29925803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reinforcing polymer composites with epoxide-grafted carbon nanotubes.
    Wang S; Liang R; Wang B; Zhang C
    Nanotechnology; 2008 Feb; 19(8):085710. PubMed ID: 21730741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites: role of strengthening the interfacial interactions.
    Khare KS; Khabaz F; Khare R
    ACS Appl Mater Interfaces; 2014 May; 6(9):6098-110. PubMed ID: 24606164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanocomposites of carbon nanotube fibers prepared by polymer crystallization.
    Zhang S; Lin W; Wong CP; Bucknall DG; Kumar S
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1642-7. PubMed ID: 20507070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Free-standing nanocomposites with high conductivity and extensibility.
    Chun KY; Kim SH; Shin MK; Kim YT; Spinks GM; Aliev AE; Baughman RH; Kim SJ
    Nanotechnology; 2013 Apr; 24(16):165401. PubMed ID: 23535262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.
    Ye JS; Cui HF; Liu X; Lim TM; Zhang WD; Sheu FS
    Small; 2005 May; 1(5):560-5. PubMed ID: 17193486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Significantly accelerated direct electron-transfer kinetics of hemoglobin in a C(60)-MWCNT nanocomposite film.
    Zhang H; Fan L; Yang S
    Chemistry; 2006 Sep; 12(27):7161-6. PubMed ID: 16807966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photocatalytic and conductive MWCNT/TiO2 nanocomposite thin films.
    Tettey KE; Yee MQ; Lee D
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2646-52. PubMed ID: 20722418
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Covalent cum noncovalent functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film.
    Yuan W; Chan-Park MB
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2065-73. PubMed ID: 22432973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of linear elongation on carbon nanotube and polyelectrolyte structures in PDMS-supported nanocomposite LbL films.
    Frueh J; Nakashima N; He Q; Möhwald H
    J Phys Chem B; 2012 Oct; 116(40):12257-62. PubMed ID: 22978605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.