These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 21842488)
1. Transcriptional profiling in Saccharomyces cerevisiae relevant for predicting alachlor mechanisms of toxicity. Gil FN; Gonçalves AC; Jacinto MJ; Becker JD; Viegas CA Environ Toxicol Chem; 2011 Nov; 30(11):2506-18. PubMed ID: 21842488 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of transcriptomic responses to sub-lethal levels of six environmentally relevant pesticides in Saccharomyces cerevisiae. Gil FN; Gonçalves AC; Becker JD; Viegas CA Ecotoxicology; 2018 Sep; 27(7):871-889. PubMed ID: 29611082 [TBL] [Abstract][Full Text] [Related]
3. The Saccharomyces cerevisiae response to stress caused by the herbicidal active substance alachlor requires the iron regulon transcription factor Aft1p. Gil FN; Bellí G; Viegas CA Environ Microbiol; 2017 Feb; 19(2):485-499. PubMed ID: 27376881 [TBL] [Abstract][Full Text] [Related]
4. Analysis of transcriptional profiles of Saccharomyces cerevisiae exposed to bisphenol A. Bereketoglu C; Arga KY; Eraslan S; Mertoglu B Curr Genet; 2017 May; 63(2):253-274. PubMed ID: 27460658 [TBL] [Abstract][Full Text] [Related]
5. Protein quality control systems in the endoplasmic reticulum and the cytosol coordinately prevent alachlor-induced proteotoxic stress in Saccharomyces cerevisiae. Limcharoensuk T; Chusuth P; Utaisincharoen P; Auesukaree C J Hazard Mater; 2024 Jun; 471():134270. PubMed ID: 38640676 [TBL] [Abstract][Full Text] [Related]
6. Potential mechanisms underlying response to effects of the fungicide pyrimethanil from gene expression profiling in Saccharomyces cerevisiae. Gil FN; Becker JD; Viegas CA J Agric Food Chem; 2014 Jun; 62(23):5237-47. PubMed ID: 24835131 [TBL] [Abstract][Full Text] [Related]
7. Cu/Zn-superoxide dismutase and glutathione are involved in response to oxidative stress induced by protein denaturing effect of alachlor in Saccharomyces cerevisiae. Rattanawong K; Kerdsomboon K; Auesukaree C Free Radic Biol Med; 2015 Dec; 89():963-71. PubMed ID: 26518674 [TBL] [Abstract][Full Text] [Related]
8. Changes in tolerance to herbicide toxicity throughout development stages of phototrophic biofilms. Paule A; Roubeix V; Lauga B; Duran R; Delmas F; Paul E; Rols JL Aquat Toxicol; 2013 Nov; 144-145():310-21. PubMed ID: 24211795 [TBL] [Abstract][Full Text] [Related]
9. The herbicide alachlor severely affects photosystem function and photosynthetic gene expression in the marine dinoflagellate Kim H; Wang H; Abassi S; Ki JS J Environ Sci Health B; 2020; 55(7):620-629. PubMed ID: 32364417 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional profiling of Saccharomyces cerevisiae exposed to propolis. de Castro PA; Savoldi M; Bonatto D; Malavazi I; Goldman MH; Berretta AA; Goldman GH BMC Complement Altern Med; 2012 Oct; 12():194. PubMed ID: 23092287 [TBL] [Abstract][Full Text] [Related]
11. Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays. Minato T; Yoshida S; Ishiguro T; Shimada E; Mizutani S; Kobayashi O; Yoshimoto H Yeast; 2009 Mar; 26(3):147-65. PubMed ID: 19243081 [TBL] [Abstract][Full Text] [Related]
12. Proteomic and Real-Time PCR analyses of Saccharomyces cerevisiae VL3 exposed to microcystin-LR reveals a set of protein alterations transversal to several eukaryotic models. Valério E; Campos A; Osório H; Vasconcelos V Toxicon; 2016 Mar; 112():22-8. PubMed ID: 26806210 [TBL] [Abstract][Full Text] [Related]
13. [Sensitivity of Chlorella vulgaris to metribuzin, puma and alachlor]. Yang Z; Dong B; Wu J Ying Yong Sheng Tai Xue Bao; 2004 Sep; 15(9):1621-5. PubMed ID: 15669497 [TBL] [Abstract][Full Text] [Related]
14. An evaluation of the carcinogenic potential of the herbicide alachlor to man. Heydens WF; Wilson AG; Kier LD; Lau H; Thake DC; Martens MA Hum Exp Toxicol; 1999 Jun; 18(6):363-91. PubMed ID: 10413243 [TBL] [Abstract][Full Text] [Related]
15. Effect of alachlor and metolachlor on toxicity of chlorpyrifos and major detoxification enzymes in the aquatic midge, Chironomus tentans (Diptera: Chironomidae). Jin-Clark Y; Anderson TD; Zhu KY Arch Environ Contam Toxicol; 2008 May; 54(4):645-52. PubMed ID: 18026775 [TBL] [Abstract][Full Text] [Related]
16. Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite. Thorsen M; Lagniel G; Kristiansson E; Junot C; Nerman O; Labarre J; Tamás MJ Physiol Genomics; 2007 Jun; 30(1):35-43. PubMed ID: 17327492 [TBL] [Abstract][Full Text] [Related]
17. Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation. Mendes-Ferreira A; del Olmo M; García-Martínez J; Jiménez-Martí E; Leão C; Mendes-Faia A; Pérez-Ortín JE Appl Environ Microbiol; 2007 Aug; 73(16):5363-9. PubMed ID: 17601813 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome profiling of Saccharomyces cerevisiae mutants lacking C2H2 zinc finger proteins. Mao J; Habib T; Shenwu M; Kang B; Allen W; Robertson L; Yang JY; Deng Y BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S14. PubMed ID: 18366603 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Li BZ; Yuan YJ Appl Microbiol Biotechnol; 2010 May; 86(6):1915-24. PubMed ID: 20309542 [TBL] [Abstract][Full Text] [Related]
20. Ethane sulfonate metabolite of alachlor: assessment of oncogenic potential based on metabolic and mechanistic considerations. Heydens WF; Wilson AG; Kraus LJ; Hopkins WE; Hotz KJ Toxicol Sci; 2000 May; 55(1):36-43. PubMed ID: 10788557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]