BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21842511)

  • 1. Electro-active Polymer Actuator Based on Sulfonated Polyimide with Highly Conductive Silver Electrodes Via Self-metallization.
    Song J; Jeon JH; Oh IK; Park KC
    Macromol Rapid Commun; 2011 Oct; 32(19):1583-7. PubMed ID: 21842511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of silver patterns on polyimide films based on solid-phase electrochemical constructive lithography using ion-exchangeable precursor layers.
    Akamatsu K; Fukumoto Y; Taniyama T; Tsuruoka T; Yanagimoto H; Nawafune H
    Langmuir; 2011 Oct; 27(19):11761-6. PubMed ID: 21902268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Electroactive Polymer Actuators Based on Ultrathick Ionic Polymer-Metal Composites with Nanodispersed Metal Electrodes.
    Wang HS; Cho J; Song DS; Jang JH; Jho JY; Park JH
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21998-22005. PubMed ID: 28593763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled formation of optically reflective and electrically conductive silvered surfaces on polyimide film via a direct ion-exchange self-metallization technique using silver ammonia complex cation as the precursor.
    Qi S; Wu Z; Wu D; Jin R
    J Phys Chem B; 2008 May; 112(18):5575-84. PubMed ID: 18407710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consecutive large-scale fabrication of surface-silvered polyimide fibers via an integrated direct ion-exchange self-metallization strategy.
    Han E; Wang Y; Chen X; Shang G; Yu W; Niu H; Qi S; Wu D; Jin R
    ACS Appl Mater Interfaces; 2013 May; 5(10):4293-301. PubMed ID: 23593925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly reflective and conductive double-surface-silvered polyimide films prepared from silver fluoride and BTDA/4,4'-ODA.
    Qi S; Wu Z; Wu D; Wang W; Jin R
    Langmuir; 2007 Apr; 23(9):4878-85. PubMed ID: 17378592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes.
    Kim J; Jeon JH; Kim HJ; Lim H; Oh IK
    ACS Nano; 2014 Mar; 8(3):2986-97. PubMed ID: 24548279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications.
    Yasuda T; Nakamura S; Honda Y; Kinugawa K; Lee SY; Watanabe M
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1783-90. PubMed ID: 22352958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfonated Copper Phthalocyanine/Sulfonated Polysulfone Composite Membrane for Ionic Polymer Actuators with High Power Density and Fast Response Time.
    Kwon T; Cho H; Lee JW; Henkensmeier D; Kang Y; Koo CM
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29063-29070. PubMed ID: 28782936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Template-Assisted Self-Assembly of Conductive Polymer Electrodes for Ionic Electroactive Polymers.
    Jo A; Huet C; Naguib HE
    Front Bioeng Biotechnol; 2020; 8():837. PubMed ID: 32850715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of highly reflective and conductive double-surface-silvered layers embedded on polymeric films through all-wet process at room temperature.
    Yang S; Wu D; Qi S; Cui G; Jin R; Wu Z
    J Phys Chem B; 2009 Jul; 113(29):9694-701. PubMed ID: 19555074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printable polymer actuators from ionic liquid, soluble polyimide, and ubiquitous carbon materials.
    Imaizumi S; Ohtsuki Y; Yasuda T; Kokubo H; Watanabe M
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6307-15. PubMed ID: 23738653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and Characterization of a Novel Smart-Polymer Actuator with Nanodispersed CNT/Pd Composite Interfacial Electrodes.
    Ru J; Zhao D; Zhu Z; Wang Y
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel ionic polymer-metal composite actuator based on sulfonated poly(1,4-phenylene ether-ether-sulfone) and polyvinylidene fluoride/sulfonated graphene oxide.
    Khan A; Jain RK; Ghosh B; Inamuddin ; Asiri AM
    RSC Adv; 2018 Jul; 8(45):25423-25435. PubMed ID: 35539767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic polymer-metal composite actuators obtained from radiation-grafted cation- and anion-exchange membranes.
    Park JH; Han MJ; Song DS; Jho JY
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22847-54. PubMed ID: 25420910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfonated poly(styrene-b-ethylene-co-butylene-b-styrene) and fullerene composites for ionic polymer actuators.
    Wang XL; Oh IK
    J Nanosci Nanotechnol; 2010 May; 10(5):3203-6. PubMed ID: 20358922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver nanoparticle polymer composite based humidity sensor.
    Power AC; Betts AJ; Cassidy JF
    Analyst; 2010 Jul; 135(7):1645-52. PubMed ID: 20514383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation-grafted fluoropolymers soaked with imidazolium-based ionic liquids for high-performance ionic polymer-metal composite actuators.
    Lee JY; Wang HS; Yoon BR; Han MJ; Jho JY
    Macromol Rapid Commun; 2010 Nov; 31(21):1897-902. PubMed ID: 21567610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.
    Min Y; Yang Y; Poojari Y; Liu Y; Wu JC; Hansford DJ; Epstein AJ
    Biomacromolecules; 2013 Jun; 14(6):1727-31. PubMed ID: 23600698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers.
    Kong L; Rui G; Wang G; Huang R; Li R; Yu J; Qi S; Wu D
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29099072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.