These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21842537)

  • 1. Afferent and efferent pathways in the visual system of the freshwater snail Planorbarius corneus.
    Tuchina OP; Zhukov VV; Meyer-Rochow VB
    Dongwuxue Yanjiu; 2011 Aug; 32(4):403-20. PubMed ID: 21842537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central origin of the efferent neurons projecting to the eyes of Limulus polyphemus.
    Calman BG; Battelle BA
    Vis Neurosci; 1991 May; 6(5):481-95. PubMed ID: 2069900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FMRF-amide-like immunoreactive efferent fibers and FMRF-amide suppression of pacemaker neurons in eyes of Bulla.
    Jacklet JW; Klose M; Goldberg M
    J Neurobiol; 1987 Sep; 18(5):433-49. PubMed ID: 3655787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Retina mediators in fresh-water mollusc Lymnaeae stagnalis].
    Zhukov VV
    Zh Evol Biokhim Fiziol; 2007; 43(5):440-7. PubMed ID: 18038643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Structure of visual pathways in the nervous system of fresh water pulmonary molluscs].
    Zhukov VV; Tuchina OP
    Zh Evol Biokhim Fiziol; 2008; 44(3):291-301. PubMed ID: 18727418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efferent axons in the fish optic nerve and their effect on the retinal ganglion cells.
    Sandeman DC; Rosenthal NP
    Brain Res; 1974 Mar; 68(1):41-54. PubMed ID: 4470451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The circadian pacemaker in the Aplysia eye sends axons throughout the central nervous system.
    Olson LM; Jacklet JW
    J Neurosci; 1985 Dec; 5(12):3214-27. PubMed ID: 3001240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of serotonin and FMRF-amide in the brain of Lymnaea stagnalis with respect to the visual system.
    Tuchina OP; Zhukov VV; Meyer-Rochow VB
    Dongwuxue Yanjiu; 2012 Jun; 33(E1-2):e1-12. PubMed ID: 22653864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The accessory optic system of Rana pipiens: neuroanatomical connections and intrinsic organization.
    Montgomery N; Fite KV; Bengston L
    J Comp Neurol; 1981 Dec; 203(4):595-612. PubMed ID: 7035505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defense reaction in the pond snail Planorbis corneus. II. Central pattern generator.
    Arshavsky YI; Deliagina TG; Okshtein IL; Orlovsky GN; Panchin YV; Popova LB
    J Neurophysiol; 1994 Mar; 71(3):891-7. PubMed ID: 8201429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroanatomy of the visual afferents in the horseshoe crab (Limulus polyphemus).
    Chamberlain SC; Barlow RB
    J Comp Neurol; 1980 Jul; 192(2):387-400. PubMed ID: 7400403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Morphologic features of the chemosensory, visual and vestibular pathways of Helix lucorum].
    Ovchinnikov AV
    Neirofiziologiia; 1986; 18(1):7-16. PubMed ID: 3960205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology and distribution of the glossopharyngeal nerve afferent and efferent neurons in the Mexican salamander, axolotl: a cobaltic-lysine study.
    Nagai T; Matsushima T
    J Comp Neurol; 1990 Dec; 302(3):473-84. PubMed ID: 1702112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathways of regenerated retinotectal axons in goldfish. I. Optic nerve, tract and tectal fascicle layer.
    Stuermer CA
    J Embryol Exp Morphol; 1986 Apr; 93():1-28. PubMed ID: 3734679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presence and role of nitric oxide in the central nervous system of the freshwater snail Planorbarius corneus: possible implication in neuron-microglia communication.
    Peruzzi E; Fontana G; Sonetti D
    Brain Res; 2004 Apr; 1005(1-2):9-20. PubMed ID: 15044059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central representation and functional connections of afferent and efferent pathways of Helix pomatia L. lip nerves.
    Hernádi L; Kemenes G; Salánki J
    Acta Biol Hung; 1984; 35(1):49-69. PubMed ID: 6239475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pretectal nucleus lentiformis mesencephali of Rana pipiens.
    Montgomery NM; Fite KV; Grigonis AM
    J Comp Neurol; 1985 Apr; 234(2):264-75. PubMed ID: 3872890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efferent influences on the bioelectrical activity of the retina in primates.
    Ortiz G; Odom JV; Passaglia CL; Tzekov RT
    Doc Ophthalmol; 2017 Feb; 134(1):57-73. PubMed ID: 28032236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preoptic FMRF-amide-like immunoreactive projections to the retina in the lamprey (Lampetra fluviatilis).
    Médina M; Repérant J; Ward R; Jay B; Miceli D; Kenigfest N
    Brain Res; 2009 Jun; 1273():58-65. PubMed ID: 19344699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Golgi studies of the first optic ganglion of the ant, Cataglyphis bicolor.
    Ribi WA
    Cell Tissue Res; 1975 Jul; 160(2):207-17. PubMed ID: 50141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.