These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21842856)

  • 1. Mechanism of YF3 nanoparticle formation in reverse micelles.
    Lemyre JL; Lamarre S; Beaupré A; Ritcey AM
    Langmuir; 2011 Oct; 27(19):11824-34. PubMed ID: 21842856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring supported-nanocluster heterogeneous catalyst formation: product and kinetic evidence for a 2-step, nucleation and autocatalytic growth mechanism of Pt(0)n formation from H2PtCl6 on Al2O3 or TiO2.
    Mondloch JE; Yan X; Finke RG
    J Am Chem Soc; 2009 May; 131(18):6389-96. PubMed ID: 19379011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of formation of inorganic and organic nanoparticles from microemulsions.
    Destrée C; Debuigne F; Jeunieau L; Nagy JB
    Adv Colloid Interface Sci; 2006 Nov; 123-126():353-67. PubMed ID: 16860772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coagulation of nanoparticles in reverse micellar systems: a Monte Carlo model.
    Jain R; Shukla D; Mehra A
    Langmuir; 2005 Nov; 21(24):11528-33. PubMed ID: 16285836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle precipitation in reverse microemulsions: particle formation dynamics and tailoring of particle size distributions.
    Niemann B; Veit P; Sundmacher K
    Langmuir; 2008 Apr; 24(8):4320-8. PubMed ID: 18307367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nucleation kinetics of ZnO nanoparticles from ZnCl2 in ethanol solutions.
    Vega-Poot AG; Rodríguez-Gattorno G; Soberanis-Domínguez OE; Patiño-Díaz RT; Espinosa-Pesqueira M; Oskam G
    Nanoscale; 2010 Dec; 2(12):2710-7. PubMed ID: 20877855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of formation of nanoparticles in reverse micellar systems: Ostwald ripening of silver halide particles.
    Shukla D; Joshi AA; Mehra A
    Langmuir; 2009 Apr; 25(6):3786-93. PubMed ID: 19708254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo models for nanoparticle formation in two microemulsion systems.
    Jain R; Mehra A
    Langmuir; 2004 Jul; 20(15):6507-13. PubMed ID: 15248743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of Eu-Doped Y(2)O(3) Luminescent Nanoparticles in Nonionic Reverse Microemulsions.
    Lee MH; Oh SG; Yi SC
    J Colloid Interface Sci; 2000 Jun; 226(1):65-70. PubMed ID: 11401347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of silver particle formation during photoreduction using in situ time-resolved SAXS analysis.
    Harada M; Katagiri E
    Langmuir; 2010 Dec; 26(23):17896-905. PubMed ID: 21047110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QM/MD simulation of SWNT nucleation on transition-metal carbide nanoparticles.
    Page AJ; Yamane H; Ohta Y; Irle S; Morokuma K
    J Am Chem Soc; 2010 Nov; 132(44):15699-707. PubMed ID: 20961094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth.
    Lindfors L; Skantze P; Skantze U; Westergren J; Olsson U
    Langmuir; 2007 Sep; 23(19):9866-74. PubMed ID: 17696457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of silver bromide precipitate of nanoparticles in a single microemulsion utilizing the surfactant counterion.
    Husein M; Rodil E; Vera JH
    J Colloid Interface Sci; 2004 May; 273(2):426-34. PubMed ID: 15082377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregative growth in the size-controlled growth of monodispersed gold nanoparticles.
    Njoki PN; Luo J; Kamundi MM; Lim S; Zhong CJ
    Langmuir; 2010 Aug; 26(16):13622-9. PubMed ID: 20695612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of nanoparticle formation in self-assembled colloidal templates: population balance model and Monte Carlo simulation.
    Ethayaraja M; Dutta K; Bandyopadhyaya R
    J Phys Chem B; 2006 Aug; 110(33):16471-81. PubMed ID: 16913778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size.
    Sardar R; Shumaker-Parry JS
    J Am Chem Soc; 2011 Jun; 133(21):8179-90. PubMed ID: 21548572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the nucleation and growth of amorphous CaCO3 by means of time-resolved static light scattering.
    Liu J; Rieger J; Huber K
    Langmuir; 2008 Aug; 24(15):8262-71. PubMed ID: 18611042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.