BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 21842876)

  • 1. Argiotoxin in the closed AMPA receptor channel: experimental and modeling study.
    Barygin OI; Grishin EV; Tikhonov DB
    Biochemistry; 2011 Sep; 50(38):8213-20. PubMed ID: 21842876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and biological activity of argiotoxin 636 and analogues: selective antagonists for ionotropic glutamate receptors.
    Nelson JK; Frølund SU; Tikhonov DB; Kristensen AS; Strømgaard K
    Angew Chem Int Ed Engl; 2009; 48(17):3087-91. PubMed ID: 19152392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Argiotoxin detects molecular differences in AMPA receptor channels.
    Herlitze S; Raditsch M; Ruppersberg JP; Jahn W; Monyer H; Schoepfer R; Witzemann V
    Neuron; 1993 Jun; 10(6):1131-40. PubMed ID: 7686380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential dependence on GluR2 expression of three characteristic features of AMPA receptors.
    Washburn MS; Numberger M; Zhang S; Dingledine R
    J Neurosci; 1997 Dec; 17(24):9393-406. PubMed ID: 9390995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncompetitive antagonism of AMPA receptors: Mechanistic insights from studies of polyamine toxin derivatives.
    Andersen TF; Tikhonov DB; Bølcho U; Bolshakov K; Nelson JK; Pluteanu F; Mellor IR; Egebjerg J; Strømgaard K
    J Med Chem; 2006 Sep; 49(18):5414-23. PubMed ID: 16942015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arylamine spider toxins antagonize NMDA receptor-mediated synaptic transmission in rat hippocampal slices.
    Mueller AL; Albensi BC; Ganong AH; Reynolds LS; Jackson H
    Synapse; 1991 Dec; 9(4):244-50. PubMed ID: 1662833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of antagonists for NMDA and AMPA receptors.
    Bolshakov KV; Kim KH; Potapjeva NN; Gmiro VE; Tikhonov DB; Usherwood PN; Mellor IR; Magazanik LG
    Neuropharmacology; 2005 Aug; 49(2):144-55. PubMed ID: 15996563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-dependent and -independent block of α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor channels.
    Barygin OI; Luchkina NV; Tikhonov DB
    J Neurochem; 2010 Dec; 115(6):1621-32. PubMed ID: 20969571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state.
    Mayer ML; Olson R; Gouaux E
    J Mol Biol; 2001 Aug; 311(4):815-36. PubMed ID: 11518533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of Channel Block in Calcium-Permeable AMPA Receptors.
    Twomey EC; Yelshanskaya MV; Vassilevski AA; Sobolevsky AI
    Neuron; 2018 Sep; 99(5):956-968.e4. PubMed ID: 30122377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of glutamate receptor desensitization.
    Sun Y; Olson R; Horning M; Armstrong N; Mayer M; Gouaux E
    Nature; 2002 May; 417(6886):245-53. PubMed ID: 12015593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of voltage-activated K+ currents in cultured sensory neurons by the polyamine spider toxin argiotoxin-636 may involve a polyamine transporter and an intracellular site of action.
    Scott RH; Gibson MT
    Biochem Soc Trans; 1998 Nov; 26(4):614-20. PubMed ID: 10047793
    [No Abstract]   [Full Text] [Related]  

  • 13. Polyamine toxins: development of selective ligands for ionotropic receptors.
    Strømgaard K; Jensen LS; Vogensen SB
    Toxicon; 2005 Mar; 45(3):249-54. PubMed ID: 15683862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subtype selectivity and flexibility of ionotropic glutamate receptors upon antagonist ligand binding.
    Pentikäinen U; Settimo L; Johnson MS; Pentikäinen OT
    Org Biomol Chem; 2006 Mar; 4(6):1058-70. PubMed ID: 16525550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of binding and inhibition of novel tarantula toxins in mammalian voltage-dependent potassium channels.
    Shiau YS; Huang PT; Liou HH; Liaw YC; Shiau YY; Lou KL
    Chem Res Toxicol; 2003 Oct; 16(10):1217-25. PubMed ID: 14565763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Block of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins.
    Washburn MS; Dingledine R
    J Pharmacol Exp Ther; 1996 Aug; 278(2):669-78. PubMed ID: 8768718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of the pore domain of the GLUR1 channel: homology with K+ channel and binding of channel blockers.
    Tikhonov DB; Mellor JR; Usherwood PN; Magazanik LG
    Biophys J; 2002 Apr; 82(4):1884-93. PubMed ID: 11916847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homology model of dihydropyridine receptor: implications for L-type Ca(2+) channel modulation by agonists and antagonists.
    Zhorov BS; Folkman EV; Ananthanarayanan VS
    Arch Biochem Biophys; 2001 Sep; 393(1):22-41. PubMed ID: 11516158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic blockers escape from trapping in the AMPA receptor channels by leaking into the cytoplasm.
    Tikhonova TB; Barygin OI; Gmiro VE; Tikhonov DB; Magazanik LG
    Neuropharmacology; 2008 Mar; 54(4):653-64. PubMed ID: 18178227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-mode docking search in iGluR homology models implicates three residues in the control of ligand selectivity.
    Rodriguez J; Carcache L; Rein KS
    J Mol Recognit; 2005; 18(2):183-9. PubMed ID: 15476293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.