These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

803 related articles for article (PubMed ID: 21842894)

  • 1. Protein-ligand interaction energies with dispersion corrected density functional theory and high-level wave function based methods.
    Antony J; Grimme S; Liakos DG; Neese F
    J Phys Chem A; 2011 Oct; 115(41):11210-20. PubMed ID: 21842894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals.
    Burns LA; Vázquez-Mayagoitia A; Sumpter BG; Sherrill CD
    J Chem Phys; 2011 Feb; 134(8):084107. PubMed ID: 21361527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular binding thermodynamics by dispersion-corrected density functional theory.
    Grimme S
    Chemistry; 2012 Aug; 18(32):9955-64. PubMed ID: 22782805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does DFT-D estimate accurate energies for the binding of ligands to metal complexes?
    Ryde U; Mata RA; Grimme S
    Dalton Trans; 2011 Nov; 40(42):11176-83. PubMed ID: 21853206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems.
    Kruse H; Grimme S
    J Chem Phys; 2012 Apr; 136(15):154101. PubMed ID: 22519309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of conventional and dispersion-corrected density-functional theory methods for hydrogen bonding interaction energies.
    DiLabio GA; Johnson ER; Otero-de-la-Roza A
    Phys Chem Chem Phys; 2013 Aug; 15(31):12821-8. PubMed ID: 23803877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully ab initio protein-ligand interaction energies with dispersion corrected density functional theory.
    Antony J; Grimme S
    J Comput Chem; 2012 Aug; 33(21):1730-9. PubMed ID: 22570225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules.
    McNamara JP; Hillier IH
    Phys Chem Chem Phys; 2007 May; 9(19):2362-70. PubMed ID: 17492099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking density functional methods against the S66 and S66x8 datasets for non-covalent interactions.
    Goerigk L; Kruse H; Grimme S
    Chemphyschem; 2011 Dec; 12(17):3421-33. PubMed ID: 22113958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations.
    Jurecka P; Cerný J; Hobza P; Salahub DR
    J Comput Chem; 2007 Jan; 28(2):555-69. PubMed ID: 17186489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost.
    Schwabe T; Grimme S
    Acc Chem Res; 2008 Apr; 41(4):569-79. PubMed ID: 18324790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are AM1 ligand-protein binding enthalpies good enough for use in the rational design of new drugs?
    Villar R; Gil MJ; García JI; Martínez-Merino V
    J Comput Chem; 2005 Oct; 26(13):1347-58. PubMed ID: 16021597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperativity in noncovalent interactions of biologically relevant molecules.
    Antony J; Brüske B; Grimme S
    Phys Chem Chem Phys; 2009 Oct; 11(38):8440-7. PubMed ID: 19774274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmark interaction energies for biologically relevant noncovalent complexes containing divalent sulfur.
    Mintz BJ; Parks JM
    J Phys Chem A; 2012 Jan; 116(3):1086-92. PubMed ID: 22181988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies.
    Mackie ID; DiLabio GA
    J Chem Phys; 2011 Oct; 135(13):134318. PubMed ID: 21992316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved correlation energy extrapolation schemes based on local pair natural orbital methods.
    Liakos DG; Neese F
    J Phys Chem A; 2012 May; 116(19):4801-16. PubMed ID: 22489633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of London dispersion on the isomerization reactions of large organic molecules: a density functional benchmark study.
    Huenerbein R; Schirmer B; Moellmann J; Grimme S
    Phys Chem Chem Phys; 2010 Jul; 12(26):6940-8. PubMed ID: 20461239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.