These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21842920)

  • 1. Using a pruned basis, a non-product quadrature grid, and the exact Watson normal-coordinate kinetic energy operator to solve the vibrational Schrödinger equation for C2H4.
    Avila G; Carrington T
    J Chem Phys; 2011 Aug; 135(6):064101. PubMed ID: 21842920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using nonproduct quadrature grids to solve the vibrational Schrödinger equation in 12D.
    Avila G; Carrington T
    J Chem Phys; 2011 Feb; 134(5):054126. PubMed ID: 21303111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonproduct quadrature grids for solving the vibrational Schrödinger equation.
    Avila G; Carrington T
    J Chem Phys; 2009 Nov; 131(17):174103. PubMed ID: 19894994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solving the vibrational Schrödinger equation using bases pruned to include strongly coupled functions and compatible quadratures.
    Avila G; Carrington T
    J Chem Phys; 2012 Nov; 137(17):174108. PubMed ID: 23145718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using an internal coordinate Gaussian basis and a space-fixed Cartesian coordinate kinetic energy operator to compute a vibrational spectrum with rectangular collocation.
    Manzhos S; Carrington T
    J Chem Phys; 2016 Dec; 145(22):224110. PubMed ID: 27984898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational Energy Levels via Finite-Basis Calculations Using a Quasi-Analytic Form of the Kinetic Energy.
    Vázquez J; Harding ME; Stanton JF; Gauss J
    J Chem Theory Comput; 2011 May; 7(5):1428-42. PubMed ID: 26610133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using simultaneous diagonalization and trace minimization to make an efficient and simple multidimensional basis for solving the vibrational Schrodinger equation.
    Dawes R; Carrington T
    J Chem Phys; 2006 Feb; 124(5):054102. PubMed ID: 16468846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-dimensional Smolyak collocation method in curvilinear coordinates for computing vibrational spectra.
    Avila G; Carrington T
    J Chem Phys; 2015 Dec; 143(21):214108. PubMed ID: 26646870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computing vibrational energy levels by using mappings to fully exploit the structure of a pruned product basis.
    Cooper J; Carrington T
    J Chem Phys; 2009 Jun; 130(21):214110. PubMed ID: 19508059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates.
    Czakó G; Szalay V; Császár AG; Furtenbacher T
    J Chem Phys; 2005 Jan; 122(2):024101. PubMed ID: 15638566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fourth age of quantum chemistry: molecules in motion.
    Császár AG; Fábri C; Szidarovszky T; Mátyus E; Furtenbacher T; Czakó G
    Phys Chem Chem Phys; 2012 Jan; 14(3):1085-106. PubMed ID: 21997300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contracted basis Lanczos methods for computing numerically exact rovibrational levels of methane.
    Wang XG; Carrington T
    J Chem Phys; 2004 Aug; 121(7):2937-54. PubMed ID: 15291604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the efficiency of treating singularities in triatomic variational vibrational computations. The vibrational states of H(+)3 up to dissociation.
    Szidarovszky T; Császár AG; Czakó G
    Phys Chem Chem Phys; 2010 Aug; 12(29):8373-86. PubMed ID: 20526489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal grids for generalized finite basis and discrete variable representations: definition and method of calculation.
    Szalay V
    J Chem Phys; 2006 Oct; 125(15):154115. PubMed ID: 17059247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspects of the Eckart frame ro-vibrational kinetic energy operator.
    Szalay V
    J Chem Phys; 2015 Aug; 143(6):064104. PubMed ID: 26277124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computing vibrational energy levels of CH
    Avila G; Carrington T
    J Chem Phys; 2017 Oct; 147(14):144102. PubMed ID: 29031264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient method for energy levels calculation using full symmetry and exact kinetic energy operator: tetrahedral molecules.
    Nikitin AV; Rey M; Tyuterev VG
    J Chem Phys; 2015 Mar; 142(9):094118. PubMed ID: 25747072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numeric kinetic energy operators for molecules in polyspherical coordinates.
    Sadri K; Lauvergnat D; Gatti F; Meyer HD
    J Chem Phys; 2012 Jun; 136(23):234112. PubMed ID: 22779586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pruned collocation-based multiconfiguration time-dependent Hartree approach using a Smolyak grid for solving the Schrödinger equation with a general potential energy surface.
    Wodraszka R; Carrington T
    J Chem Phys; 2019 Apr; 150(15):154108. PubMed ID: 31005102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational energy levels with arbitrary potentials using the Eckart-Watson Hamiltonians and the discrete variable representation.
    Mátyus E; Czakó G; Sutcliffe BT; Császár AG
    J Chem Phys; 2007 Aug; 127(8):084102. PubMed ID: 17764224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.