These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21843151)

  • 21. Mechanism of rhodopsin kinase regulation by recoverin.
    Komolov KE; Senin II; Kovaleva NA; Christoph MP; Churumova VA; Grigoriev II; Akhtar M; Philippov PP; Koch KW
    J Neurochem; 2009 Jul; 110(1):72-9. PubMed ID: 19457073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rhodopsin transient complexes investigated by systems biology approaches.
    Dell'Orco D
    Methods Mol Biol; 2015; 1271():251-63. PubMed ID: 25697529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing rhodopsin-transducin interaction using Drosophila Rh1-bovine rhodopsin chimeras.
    Natochin M; Barren B; Ahmad ST; O'Tousa JE; Artemyev NO
    Vision Res; 2006 Dec; 46(27):4575-81. PubMed ID: 16979689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model for the recovery kinetics of rod phototransduction, based on the enzymatic deactivation of rhodopsin.
    Laitko U; Hofmann KP
    Biophys J; 1998 Feb; 74(2 Pt 1):803-15. PubMed ID: 9533693
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A methyl group at C7 of 11-cis-retinal allows chromophore formation but affects rhodopsin activation.
    Bosch L; Cordomí A; Domínguez M; Toledo D; Morillo M; Pérez JJ; Alvarez R; de Lera AR; Garriga P
    Vision Res; 2006 Dec; 46(27):4472-81. PubMed ID: 17027899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mesoscopic Monte Carlo simulations of stochastic encounters between photoactivated rhodopsin and transducin in disc membranes.
    Dell'Orco D; Schmidt H
    J Phys Chem B; 2008 Apr; 112(14):4419-26. PubMed ID: 18345658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstitution of the vertebrate visual cascade using recombinant heterotrimeric transducin purified from Sf9 cells.
    Min KC; Gravina SA; Sakmar TP
    Protein Expr Purif; 2000 Dec; 20(3):514-26. PubMed ID: 11087692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of turn-offs of frog rod phototransduction cascade.
    Astakhova LA; Firsov ML; Govardovskii VI
    J Gen Physiol; 2008 Nov; 132(5):587-604. PubMed ID: 18955597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Affinity of transducin for photoactivated rhodopsin: dependence on nucleotide binding state.
    Clack JW
    BMB Rep; 2008 Jul; 41(7):548-53. PubMed ID: 18682040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hybrid stochastic/deterministic model of single photon response and light adaptation in mouse rods.
    Beelen CJ; Asteriti S; Cangiano L; Koch KW; Dell'Orco D
    Comput Struct Biotechnol J; 2021; 19():3720-3734. PubMed ID: 34285774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.
    Reidel B; Goldmann T; Giessl A; Wolfrum U
    Cell Motil Cytoskeleton; 2008 Oct; 65(10):785-800. PubMed ID: 18623243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding.
    Bayburt TH; Vishnivetskiy SA; McLean MA; Morizumi T; Huang CC; Tesmer JJ; Ernst OP; Sligar SG; Gurevich VV
    J Biol Chem; 2011 Jan; 286(2):1420-8. PubMed ID: 20966068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CNTF negatively regulates the phototransduction machinery in rod photoreceptors: implication for light-induced photostasis plasticity.
    Wen R; Song Y; Liu Y; Li Y; Zhao L; Laties AM
    Adv Exp Med Biol; 2008; 613():407-13. PubMed ID: 18188971
    [No Abstract]   [Full Text] [Related]  

  • 34. Binding of transducin to light-activated rhodopsin prevents transducin interaction with the rod cGMP phosphodiesterase gamma-subunit.
    Artemyev NO
    Biochemistry; 1997 Apr; 36(14):4188-93. PubMed ID: 9100013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Similarities between G-proteins in visual cells of Sepia and cattle.
    Stieve H; Lumme G
    FEBS Lett; 1989 Aug; 253(1-2):6-10. PubMed ID: 2759244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transducin binding in bovine rod outer segment disk membranes of different age/spatial location.
    Young JE; Albert AD
    Exp Eye Res; 2000 Jun; 70(6):809-12. PubMed ID: 10843786
    [No Abstract]   [Full Text] [Related]  

  • 37. Suramin affects coupling of rhodopsin to transducin.
    Lehmann N; Krishna Aradhyam G; Fahmy K
    Biophys J; 2002 Feb; 82(2):793-802. PubMed ID: 11806921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rhodopsin is spatially heterogeneously distributed in rod outer segment disk membranes.
    Buzhynskyy N; Salesse C; Scheuring S
    J Mol Recognit; 2011; 24(3):483-9. PubMed ID: 21504027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Incorporation of rhodopsin in laterally structured supported membranes: observation of transducin activation with spatially and time-resolved surface plasmon resonance.
    Heyse S; Ernst OP; Dienes Z; Hofmann KP; Vogel H
    Biochemistry; 1998 Jan; 37(2):507-22. PubMed ID: 9425071
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structures of the Rhodopsin-Transducin Complex: Insights into G-Protein Activation.
    Gao Y; Hu H; Ramachandran S; Erickson JW; Cerione RA; Skiniotis G
    Mol Cell; 2019 Aug; 75(4):781-790.e3. PubMed ID: 31300275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.