BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21843333)

  • 1. Global organization of protein complexome in the yeast Saccharomyces cerevisiae.
    Lee SH; Kim PJ; Jeong H
    BMC Syst Biol; 2011 Aug; 5():126. PubMed ID: 21843333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein complex-based analysis framework for high-throughput data sets.
    Vinayagam A; Hu Y; Kulkarni M; Roesel C; Sopko R; Mohr SE; Perrimon N
    Sci Signal; 2013 Feb; 6(264):rs5. PubMed ID: 23443684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein complex prediction with RNSC.
    King AD; Pržulj N; Jurisica I
    Methods Mol Biol; 2012; 804():297-312. PubMed ID: 22144160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization and analysis of the complexome network of Saccharomyces cerevisiae.
    Li SS; Xu K; Wilkins MR
    J Proteome Res; 2011 Oct; 10(10):4744-56. PubMed ID: 21842913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The network organization of cancer-associated protein complexes in human tissues.
    Zhao J; Lee SH; Huss M; Holme P
    Sci Rep; 2013; 3():1583. PubMed ID: 23567845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved abundance and topological features in chromatin-remodeling protein interaction networks.
    Sardiu ME; Gilmore JM; Groppe BD; Herman D; Ramisetty SR; Cai Y; Jin J; Conaway RC; Conaway JW; Florens L; Washburn MP
    EMBO Rep; 2015 Jan; 16(1):116-26. PubMed ID: 25427557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.
    Luo J; Qi Y
    PLoS One; 2015; 10(6):e0131418. PubMed ID: 26125187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping Cellular Microenvironments: Proximity Labeling and Complexome Profiling (Seventh Symposium of the Göttingen Proteomics Forum).
    Valerius O; Asif AR; Beißbarth T; Bohrer R; Dihazi H; Feussner K; Jahn O; Majcherczyk A; Schmidt B; Schmitt K; Urlaub H; Lenz C
    Cells; 2019 Oct; 8(10):. PubMed ID: 31581721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome survey reveals modularity of the yeast cell machinery.
    Gavin AC; Aloy P; Grandi P; Krause R; Boesche M; Marzioch M; Rau C; Jensen LJ; Bastuck S; Dümpelfeld B; Edelmann A; Heurtier MA; Hoffman V; Hoefert C; Klein K; Hudak M; Michon AM; Schelder M; Schirle M; Remor M; Rudi T; Hooper S; Bauer A; Bouwmeester T; Casari G; Drewes G; Neubauer G; Rick JM; Kuster B; Bork P; Russell RB; Superti-Furga G
    Nature; 2006 Mar; 440(7084):631-6. PubMed ID: 16429126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying protein complexes based on brainstorming strategy.
    Shen X; Zhou J; Yi L; Hu X; He T; Yang J
    Methods; 2016 Nov; 110():44-53. PubMed ID: 27405005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing protein complexes: from proteomics to systems biology.
    Armstrong JD; Pocklington AJ; Cumiskey MA; Grant SG
    Proteomics; 2006 Sep; 6(17):4724-31. PubMed ID: 16892485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subunit architecture of multimeric complexes isolated directly from cells.
    Hernández H; Dziembowski A; Taverner T; Séraphin B; Robinson CV
    EMBO Rep; 2006 Jun; 7(6):605-10. PubMed ID: 16729021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of protein interaction network dynamics in yeast.
    Celaj A; Schlecht U; Smith JD; Xu W; Suresh S; Miranda M; Aparicio AM; Proctor M; Davis RW; Roth FP; St Onge RP
    Mol Syst Biol; 2017 Jul; 13(7):934. PubMed ID: 28705884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein networking: insights into global functional organization of proteomes.
    Pieroni E; de la Fuente van Bentem S; Mancosu G; Capobianco E; Hirt H; de la Fuente A
    Proteomics; 2008 Feb; 8(4):799-816. PubMed ID: 18297653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A density-based clustering approach for identifying overlapping protein complexes with functional preferences.
    Hu L; Chan KC
    BMC Bioinformatics; 2015 May; 16():174. PubMed ID: 26013799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global protein function prediction from protein-protein interaction networks.
    Vazquez A; Flammini A; Maritan A; Vespignani A
    Nat Biotechnol; 2003 Jun; 21(6):697-700. PubMed ID: 12740586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From proteomes to complexomes in the era of systems biology.
    Clancy T; Hovig E
    Proteomics; 2014 Jan; 14(1):24-41. PubMed ID: 24243660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of overlapping protein complexes in gene expression, phenotype and pathways of Saccharomyces cerevisiae using Prorank based Fuzzy algorithm.
    Manikandan P; Ramyachitra D; Banupriya D
    Gene; 2016 Apr; 580(2):144-158. PubMed ID: 26809099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inference of protein complex activities from chemical-genetic profile and its applications: predicting drug-target pathways.
    Han S; Kim D
    PLoS Comput Biol; 2008 Aug; 4(8):e1000162. PubMed ID: 18769708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward an understanding of the protein interaction network of the human liver.
    Wang J; Huo K; Ma L; Tang L; Li D; Huang X; Yuan Y; Li C; Wang W; Guan W; Chen H; Jin C; Wei J; Zhang W; Yang Y; Liu Q; Zhou Y; Zhang C; Wu Z; Xu W; Zhang Y; Liu T; Yu D; Zhang Y; Chen L; Zhu D; Zhong X; Kang L; Gan X; Yu X; Ma Q; Yan J; Zhou L; Liu Z; Zhu Y; Zhou T; He F; Yang X
    Mol Syst Biol; 2011 Oct; 7():536. PubMed ID: 21988832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.