These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21843463)

  • 1. Kinetic proofreading in chromatin remodeling: the case of ISWI/ACF.
    Blossey R; Schiessel H
    Biophys J; 2011 Aug; 101(4):L30-2. PubMed ID: 21843463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic control of nucleosome displacement by ISWI/ACF chromatin remodelers.
    Florescu AM; Schiessel H; Blossey R
    Phys Rev Lett; 2012 Sep; 109(11):118103. PubMed ID: 23005680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proposal for kinetic proof reading by ISWI family chromatin remodeling motors.
    Narlikar GJ
    Curr Opin Chem Biol; 2010 Oct; 14(5):660-5. PubMed ID: 20833099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory motifs on ISWI chromatin remodelers: molecular mechanisms and kinetic proofreading.
    Brysbaert G; Lensink MF; Blossey R
    J Phys Condens Matter; 2015 Feb; 27(6):064108. PubMed ID: 25563573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expansion of the ISWI chromatin remodeler family with new active complexes.
    Oppikofer M; Bai T; Gan Y; Haley B; Liu P; Sandoval W; Ciferri C; Cochran AG
    EMBO Rep; 2017 Oct; 18(10):1697-1706. PubMed ID: 28801535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI.
    Clapier CR; Längst G; Corona DF; Becker PB; Nightingale KP
    Mol Cell Biol; 2001 Feb; 21(3):875-83. PubMed ID: 11154274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling.
    Strohner R; Wachsmuth M; Dachauer K; Mazurkiewicz J; Hochstatter J; Rippe K; Längst G
    Nat Struct Mol Biol; 2005 Aug; 12(8):683-90. PubMed ID: 16025127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo.
    Fyodorov DV; Blower MD; Karpen GH; Kadonaga JT
    Genes Dev; 2004 Jan; 18(2):170-83. PubMed ID: 14752009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study of remodeling in a nucleosomal array.
    Schram RD; Klinker H; Becker PB; Schiessel H
    Eur Phys J E Soft Matter; 2015 Aug; 38(8):85. PubMed ID: 26248702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin remodeling by imitation switch (ISWI) class ATP-dependent remodelers is stimulated by histone variant H2A.Z.
    Goldman JA; Garlick JD; Kingston RE
    J Biol Chem; 2010 Feb; 285(7):4645-51. PubMed ID: 19940112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p300-mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone.
    Ito T; Ikehara T; Nakagawa T; Kraus WL; Muramatsu M
    Genes Dev; 2000 Aug; 14(15):1899-907. PubMed ID: 10921904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple and versatile system for the ATP-dependent assembly of chromatin.
    Khuong MT; Fei J; Cruz-Becerra G; Kadonaga JT
    J Biol Chem; 2017 Nov; 292(47):19478-19490. PubMed ID: 28982979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding kinetics of human ISWI chromatin-remodelers to DNA repair sites elucidate their target location mechanism.
    Erdel F; Rippe K
    Nucleus; 2011; 2(2):105-12. PubMed ID: 21738833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remodelers organize cellular chromatin by counteracting intrinsic histone-DNA sequence preferences in a class-specific manner.
    Moshkin YM; Chalkley GE; Kan TW; Reddy BA; Ozgur Z; van Ijcken WF; Dekkers DH; Demmers JA; Travers AA; Verrijzer CP
    Mol Cell Biol; 2012 Feb; 32(3):675-88. PubMed ID: 22124157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor.
    Ito T; Bulger M; Pazin MJ; Kobayashi R; Kadonaga JT
    Cell; 1997 Jul; 90(1):145-55. PubMed ID: 9230310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobilization of hyperacetylated mononucleosomes by purified yeast ISW2 in vitro.
    Krajewski WA
    Arch Biochem Biophys; 2016 Feb; 591():1-6. PubMed ID: 26692330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic identification of a network of factors that functionally interact with the nucleosome remodeling ATPase ISWI.
    Burgio G; La Rocca G; Sala A; Arancio W; Di Gesù D; Collesano M; Sperling AS; Armstrong JA; van Heeringen SJ; Logie C; Tamkun JW; Corona DF
    PLoS Genet; 2008 Jun; 4(6):e1000089. PubMed ID: 18535655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleosome density shapes kilobase-scale regulation by a mammalian chromatin remodeler.
    Abdulhay NJ; Hsieh LJ; McNally CP; Ostrowski MS; Moore CM; Ketavarapu M; Kasinathan S; Nanda AS; Wu K; Chio US; Zhou Z; Goodarzi H; Narlikar GJ; Ramani V
    Nat Struct Mol Biol; 2023 Oct; 30(10):1571-1581. PubMed ID: 37696956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors.
    Längst G; Becker PB
    J Cell Sci; 2001 Jul; 114(Pt 14):2561-8. PubMed ID: 11683384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms for nucleosome movement by ATP-dependent chromatin remodeling complexes.
    Saha A; Wittmeyer J; Cairns BR
    Results Probl Cell Differ; 2006; 41():127-48. PubMed ID: 16909894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.