These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 21843480)

  • 1. Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models.
    Ortega A; Amorós D; García de la Torre J
    Biophys J; 2011 Aug; 101(4):892-8. PubMed ID: 21843480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic Modeling and Its Application in AUC.
    Rocco M; Byron O
    Methods Enzymol; 2015; 562():81-108. PubMed ID: 26412648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure.
    García De La Torre J; Huertas ML; Carrasco B
    Biophys J; 2000 Feb; 78(2):719-30. PubMed ID: 10653785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic modeling: the solution conformation of macromolecules and their complexes.
    Byron O
    Methods Cell Biol; 2008; 84():327-73. PubMed ID: 17964937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule.
    Brookes E; Demeler B; Rosano C; Rocco M
    Eur Biophys J; 2010 Feb; 39(3):423-35. PubMed ID: 19234696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the hydration of proteins: prediction of structural and hydrodynamic parameters from X-ray diffraction and scattering data.
    Durchschlag H; Zipper P
    Eur Biophys J; 2003 Aug; 32(5):487-502. PubMed ID: 12715248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic Properties of Biomacromolecules and Macromolecular Complexes: Concepts and Methods. A Tutorial Mini-review.
    García de la Torre J; Hernández Cifre JG
    J Mol Biol; 2020 Apr; 432(9):2930-2948. PubMed ID: 31877325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MULTIHYDRO and MONTEHYDRO: conformational search and Monte Carlo calculation of solution properties of rigid or flexible bead models.
    Garcia de la Torre J; Ortega A; Perez Sanchez HE; Hernandez Cifre JG
    Biophys Chem; 2005 Jul; 116(2):121-8. PubMed ID: 15950824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GRPY: An Accurate Bead Method for Calculation of Hydrodynamic Properties of Rigid Biomacromolecules.
    Zuk PJ; Cichocki B; Szymczak P
    Biophys J; 2018 Sep; 115(5):782-800. PubMed ID: 30144937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations.
    García de la Torre J; Huertas ML; Carrasco B
    J Magn Reson; 2000 Nov; 147(1):138-46. PubMed ID: 11042057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SOMO (SOlution MOdeler) differences between X-Ray- and NMR-derived bead models suggest a role for side chain flexibility in protein hydrodynamics.
    Rai N; Nöllmann M; Spotorno B; Tassara G; Byron O; Rocco M
    Structure; 2005 May; 13(5):723-34. PubMed ID: 15893663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computing translational diffusion and sedimentation coefficients: an evaluation of experimental data and programs.
    Rocco M; Byron O
    Eur Biophys J; 2015 Sep; 44(6):417-31. PubMed ID: 26066679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of a molecular shape for netrin-4 from hydrodynamic and small angle X-ray scattering measurements.
    Patel TR; Reuten R; Xiong S; Meier M; Winzor DJ; Koch M; Stetefeld J
    Matrix Biol; 2012 Mar; 31(2):135-40. PubMed ID: 22210009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods and tools for the prediction of hydrodynamic coefficients and other solution properties of flexible macromolecules in solution. A tutorial minireview.
    García de la Torre J; Ortega A; Amorós D; Rodríguez Schmidt R; Hernández Cifre JG
    Macromol Biosci; 2010 Jul; 10(7):721-30. PubMed ID: 20461749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. POPS: A fast algorithm for solvent accessible surface areas at atomic and residue level.
    Cavallo L; Kleinjung J; Fraternali F
    Nucleic Acids Res; 2003 Jul; 31(13):3364-6. PubMed ID: 12824328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in macromolecular hydrodynamic modeling.
    Aragon SR
    Methods; 2011 May; 54(1):101-14. PubMed ID: 21073955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration from hydrodynamics. General considerations and applications of bead modelling to globular proteins.
    García de la Torre J
    Biophys Chem; 2001 Nov; 93(2-3):159-70. PubMed ID: 11804723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SOLPRO: theory and computer program for the prediction of SOLution PROperties of rigid macromolecules and bioparticles.
    García de la Torre J; Carrasco B; Harding SE
    Eur Biophys J; 1997; 25(5-6):361-72. PubMed ID: 9213556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of biopolymers: a new method of constructing a bead model.
    Banachowicz E; Gapiński J; Patkowski A
    Biophys J; 2000 Jan; 78(1):70-8. PubMed ID: 10620274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting translational diffusion of evolutionary conserved RNA structures by the nucleotide number.
    Werner A
    Nucleic Acids Res; 2011 Feb; 39(3):e17. PubMed ID: 21068070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.