These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21843514)

  • 1. Valproic acid utilizes the isoleucine breakdown pathway for its complete β-oxidation.
    Luís PB; Ruiter JP; Ofman R; Ijlst L; Moedas M; Diogo L; Garcia P; de Almeida IT; Duran M; Wanders RJ; Silva MF
    Biochem Pharmacol; 2011 Dec; 82(11):1740-6. PubMed ID: 21843514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valproyl-dephosphoCoA: a novel metabolite of valproate formed in vitro in rat liver mitochondria.
    Silva MF; Ijlst L; Allers P; Jakobs C; Duran M; de Almeida IT; Wanders RJ
    Drug Metab Dispos; 2004 Nov; 32(11):1304-10. PubMed ID: 15483197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of 3-methylcrotonyl-CoA carboxylase explains the increased excretion of 3-hydroxyisovaleric acid in valproate-treated patients.
    Luís PB; Ruiter JP; IJlst L; Diogo L; Garcia P; de Almeida IT; Duran M; Wanders RJ; Silva MF
    J Inherit Metab Dis; 2012 May; 35(3):443-9. PubMed ID: 22189597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of hepatic carnitine palmitoyl-transferase I (CPT IA) by valproyl-CoA as a possible mechanism of valproate-induced steatosis.
    Aires CC; Ijlst L; Stet F; Prip-Buus C; de Almeida IT; Duran M; Wanders RJ; Silva MF
    Biochem Pharmacol; 2010 Mar; 79(5):792-9. PubMed ID: 19854160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical and biochemical characterization of four patients with mutations in ECHS1.
    Ferdinandusse S; Friederich MW; Burlina A; Ruiter JP; Coughlin CR; Dishop MK; Gallagher RC; Bedoyan JK; Vaz FM; Waterham HR; Gowan K; Chatfield K; Bloom K; Bennett MJ; Elpeleg O; Van Hove JL; Wanders RJ
    Orphanet J Rare Dis; 2015 Jun; 10():79. PubMed ID: 26081110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The enzymatic basis for the metabolism and inhibitory effects of valproic acid: dehydrogenation of valproyl-CoA by 2-methyl-branched-chain acyl-CoA dehydrogenase.
    Ito M; Ikeda Y; Arnez JG; Finocchiaro G; Tanaka K
    Biochim Biophys Acta; 1990 May; 1034(2):213-8. PubMed ID: 2112956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of isovaleryl-CoA dehydrogenase and short branched-chain acyl-CoA dehydrogenase in the metabolism of valproic acid: implications for the branched-chain amino acid oxidation pathway.
    Luís PB; Ruiter JP; Ijlst L; Tavares de Almeida I; Duran M; Mohsen AW; Vockley J; Wanders RJ; Silva MF
    Drug Metab Dispos; 2011 Jul; 39(7):1155-60. PubMed ID: 21430231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progressive infantile neurodegeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: a novel inborn error of branched-chain fatty acid and isoleucine metabolism.
    Zschocke J; Ruiter JP; Brand J; Lindner M; Hoffmann GF; Wanders RJ; Mayatepek E
    Pediatr Res; 2000 Dec; 48(6):852-5. PubMed ID: 11102558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inborn errors of isoleucine degradation: a review.
    Korman SH
    Mol Genet Metab; 2006 Dec; 89(4):289-99. PubMed ID: 16950638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic crotonase activity in a bacterial butyryl-CoA dehydrogenase.
    Ellison PA; Engel PC
    Biochem Mol Biol Int; 1993 Mar; 29(4):605-12. PubMed ID: 8490573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete beta-oxidation of valproate: cleavage of 3-oxovalproyl-CoA by a mitochondrial 3-oxoacyl-CoA thiolase.
    Silva MF; Ruiter JP; Overmars H; Bootsma AH; van Gennip AH; Jakobs C; Duran M; Tavares de Almeida I; Wanders RJ
    Biochem J; 2002 Mar; 362(Pt 3):755-60. PubMed ID: 11879205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and intramitochondrial levels of valproyl-coenzyme A metabolites.
    Silva MF; Ruiter JP; IJlst L; Allers P; ten Brink HJ; Jakobs C; Duran M; Tavares de Almeida I; Wanders RJ
    Anal Biochem; 2001 Mar; 290(1):60-7. PubMed ID: 11180937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The acyl-CoA dehydrogenation deficiencies. Recent advances in the enzymic characterization and understanding of the metabolic and pathophysiological disturbances in patients with acyl-CoA dehydrogenation deficiencies.
    Gregersen N
    Scand J Clin Lab Invest Suppl; 1985; 174():1-60. PubMed ID: 3892650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical, biochemical and metabolic characterisation of a mild form of human short-chain enoyl-CoA hydratase deficiency: significance of increased N-acetyl-S-(2-carboxypropyl)cysteine excretion.
    Yamada K; Aiba K; Kitaura Y; Kondo Y; Nomura N; Nakamura Y; Fukushi D; Murayama K; Shimomura Y; Pitt J; Yamaguchi S; Yokochi K; Wakamatsu N
    J Med Genet; 2015 Oct; 52(10):691-8. PubMed ID: 26251176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative inhibition studies of enoyl-CoA hydratase 1 and enoyl-CoA hydratase 2 in long-chain fatty acid oxidation.
    Wu L; Lin S; Li D
    Org Lett; 2008 Aug; 10(15):3355-8. PubMed ID: 18611036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial metabolism of valproic acid.
    Li J; Norwood DL; Mao LF; Schulz H
    Biochemistry; 1991 Jan; 30(2):388-94. PubMed ID: 1988037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate-119 of the large alpha-subunit is the catalytic base in the hydration of 2-trans-enoyl-coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli.
    He XY; Yang SY
    Biochemistry; 1997 Sep; 36(36):11044-9. PubMed ID: 9283097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of enoyl-coa hydratase in the metabolism of isoleucine by Pseudomonas putida.
    Roberts CM; Conrad RS; Sokatch JR
    Arch Microbiol; 1978 Apr; 117(1):99-108. PubMed ID: 678016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: impaired catabolism of isoleucine presenting as neurodegenerative disease.
    Sass JO; Forstner R; Sperl W
    Brain Dev; 2004 Jan; 26(1):12-4. PubMed ID: 14729408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of enoyl-CoA hydratase by long-chain L-3-hydroxyacyl-CoA and its possible effect on fatty acid oxidation.
    He XY; Yang SY; Schulz H
    Arch Biochem Biophys; 1992 Nov; 298(2):527-31. PubMed ID: 1416981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.