These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. N-terminal domains in two-domain proteins are biased to be shorter and predicted to fold faster than their C-terminal counterparts. Jacob E; Unger R; Horovitz A Cell Rep; 2013 Apr; 3(4):1051-6. PubMed ID: 23602567 [TBL] [Abstract][Full Text] [Related]
5. Early stages in the biogenesis of eukaryotic β-barrel proteins. Jores T; Rapaport D FEBS Lett; 2017 Sep; 591(17):2671-2681. PubMed ID: 28640525 [TBL] [Abstract][Full Text] [Related]
7. Autophagy: links with the proteasome. Lamark T; Johansen T Curr Opin Cell Biol; 2010 Apr; 22(2):192-8. PubMed ID: 19962293 [TBL] [Abstract][Full Text] [Related]
8. Quality control of human ABCG2 protein in the endoplasmic reticulum: ubiquitination and proteasomal degradation. Wakabayashi-Nakao K; Tamura A; Furukawa T; Nakagawa H; Ishikawa T Adv Drug Deliv Rev; 2009 Jan; 61(1):66-72. PubMed ID: 19111842 [TBL] [Abstract][Full Text] [Related]
9. Protein ubiquitination is modulated by O-GlcNAc glycosylation. Guinez C; Mir AM; Dehennaut V; Cacan R; Harduin-Lepers A; Michalski JC; Lefebvre T FASEB J; 2008 Aug; 22(8):2901-11. PubMed ID: 18434435 [TBL] [Abstract][Full Text] [Related]
10. Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility. Comyn SA; Young BP; Loewen CJ; Mayor T PLoS Genet; 2016 Jul; 12(7):e1006184. PubMed ID: 27448207 [TBL] [Abstract][Full Text] [Related]
11. [Biosynthesis of C14-labelled proteins with Chlorella pyrenoidosa]. ERB W; MAURER W Biochem Z; 1960; 332():388-95. PubMed ID: 13820524 [No Abstract] [Full Text] [Related]
12. [On the rate of protein synthesis in nucleus-free and nucleus-containing cells of Acetabularia]. CLAUSS H; WERZ G Z Naturforsch B; 1961 Mar; 16B():162-5. PubMed ID: 14448722 [No Abstract] [Full Text] [Related]
13. Deubiquitinase activity is required for the proteasomal degradation of misfolded cytosolic proteins upon heat-stress. Fang NN; Zhu M; Rose A; Wu KP; Mayor T Nat Commun; 2016 Oct; 7():12907. PubMed ID: 27698423 [TBL] [Abstract][Full Text] [Related]
14. Loops and repeats in proteins as footprints of molecular evolution. Deryusheva EI; Selivanova OM; Serdyuk IN Biochemistry (Mosc); 2012 Dec; 77(13):1487-99. PubMed ID: 23379524 [TBL] [Abstract][Full Text] [Related]
15. The Logic of the 26S Proteasome. Collins GA; Goldberg AL Cell; 2017 May; 169(5):792-806. PubMed ID: 28525752 [TBL] [Abstract][Full Text] [Related]
16. Transient arrest in proteasomal degradation during inhibition of translation in the unfolded protein response. Shenkman M; Tolchinsky S; Kondratyev M; Lederkremer GZ Biochem J; 2007 Jun; 404(3):509-16. PubMed ID: 17338678 [TBL] [Abstract][Full Text] [Related]
18. CHIP: a co-chaperone for degradation by the proteasome. Edkins AL Subcell Biochem; 2015; 78():219-42. PubMed ID: 25487024 [TBL] [Abstract][Full Text] [Related]
19. Protein misfolding, aggregation, and degradation in disease. Gregersen N; Bolund L; Bross P Methods Mol Biol; 2003; 232():3-16. PubMed ID: 12840535 [No Abstract] [Full Text] [Related]
20. CRL4B Liu F; Cao L; Zhang T; Chang F; Xu Y; Li Q; Deng J; Li L; Shao G Biochem Biophys Res Commun; 2018 Jun; 501(2):440-447. PubMed ID: 29738775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]