These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 21843650)
61. Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments. Zhu W; Mow VC; Koob TJ; Eyre DR J Orthop Res; 1993 Nov; 11(6):771-81. PubMed ID: 8283321 [TBL] [Abstract][Full Text] [Related]
62. MR imaging of normal and matrix-depleted cartilage: correlation with biomechanical function and biochemical composition. Wayne JS; Kraft KA; Shields KJ; Yin C; Owen JR; Disler DG Radiology; 2003 Aug; 228(2):493-9. PubMed ID: 12893905 [TBL] [Abstract][Full Text] [Related]
63. The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation. Li LP; Herzog W Biorheology; 2004; 41(3-4):181-94. PubMed ID: 15299251 [TBL] [Abstract][Full Text] [Related]
64. Articular cartilage collagen and proteoglycans. Their functional interdependency. Broom ND; Poole CA Arthritis Rheum; 1983 Sep; 26(9):1111-9. PubMed ID: 6684430 [TBL] [Abstract][Full Text] [Related]
65. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. Li LP; Buschmann MD; Shirazi-Adl A J Biomech; 2000 Dec; 33(12):1533-41. PubMed ID: 11006376 [TBL] [Abstract][Full Text] [Related]
66. Prediction of biomechanical properties of articular cartilage with quantitative magnetic resonance imaging. Nieminen MT; Töyräs J; Laasanen MS; Silvennoinen J; Helminen HJ; Jurvelin JS J Biomech; 2004 Mar; 37(3):321-8. PubMed ID: 14757451 [TBL] [Abstract][Full Text] [Related]
67. Direct measurement of the Poisson's ratio of human patella cartilage in tension. Elliott DM; Narmoneva DA; Setton LA J Biomech Eng; 2002 Apr; 124(2):223-8. PubMed ID: 12002132 [TBL] [Abstract][Full Text] [Related]
68. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression. Guo H; Maher SA; Torzilli PA J Biomech; 2015 Jan; 48(1):166-70. PubMed ID: 25465194 [TBL] [Abstract][Full Text] [Related]
69. Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage. Klein TJ; Chaudhry M; Bae WC; Sah RL J Biomech; 2007; 40(1):182-90. PubMed ID: 16387310 [TBL] [Abstract][Full Text] [Related]
70. Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model. Fortin M; Soulhat J; Shirazi-Adl A; Hunziker EB; Buschmann MD J Biomech Eng; 2000 Apr; 122(2):189-95. PubMed ID: 10834160 [TBL] [Abstract][Full Text] [Related]
71. A microstructural model of elastostatic properties of articular cartilage in confined compression. Bursać P; McGrath CV; Eisenberg SR; Stamenović D J Biomech Eng; 2000 Aug; 122(4):347-53. PubMed ID: 11036557 [TBL] [Abstract][Full Text] [Related]
72. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests. Wu JZ; Herzog W Ann Biomed Eng; 2000 Mar; 28(3):318-30. PubMed ID: 10784096 [TBL] [Abstract][Full Text] [Related]
73. Compressive biomechanical properties of human nasal septal cartilage. Richmon JD; Sage A; Wong WV; Chen AC; Sah RL; Watson D Am J Rhinol; 2006; 20(5):496-501. PubMed ID: 17063745 [TBL] [Abstract][Full Text] [Related]
74. Combined enzymatic degradation of proteoglycans and collagen significantly alters intratissue strains in articular cartilage during cyclic compression. Pastrama MI; Ortiz AC; Zevenbergen L; Famaey N; Gsell W; Neu CP; Himmelreich U; Jonkers I J Mech Behav Biomed Mater; 2019 Oct; 98():383-394. PubMed ID: 31349141 [TBL] [Abstract][Full Text] [Related]
75. Compressive behavior of articular cartilage is not completely explained by proteoglycan osmotic pressure. Khalsa PS; Eisenberg SR J Biomech; 1997 Jun; 30(6):589-94. PubMed ID: 9165392 [TBL] [Abstract][Full Text] [Related]
76. A Systematic Review and Guide to Mechanical Testing for Articular Cartilage Tissue Engineering. Patel JM; Wise BC; Bonnevie ED; Mauck RL Tissue Eng Part C Methods; 2019 Oct; 25(10):593-608. PubMed ID: 31288616 [TBL] [Abstract][Full Text] [Related]
77. Topographic variations in biomechanical and biochemical properties in the ankle joint: an in vitro bovine study evaluating native and engineered cartilage. Paschos NK; Makris EA; Hu JC; Athanasiou KA Arthroscopy; 2014 Oct; 30(10):1317-26. PubMed ID: 25064757 [TBL] [Abstract][Full Text] [Related]
78. The role of the superficial region in determining the dynamic properties of articular cartilage. Gannon AR; Nagel T; Kelly DJ Osteoarthritis Cartilage; 2012 Nov; 20(11):1417-25. PubMed ID: 22890186 [TBL] [Abstract][Full Text] [Related]
79. Structure and mechanical properties of high-weight-bearing and low-weight-bearing areas of hip cartilage at the micro- and nano-levels. Guo JB; Liang T; Che YJ; Yang HL; Luo ZP BMC Musculoskelet Disord; 2020 Jul; 21(1):425. PubMed ID: 32616028 [TBL] [Abstract][Full Text] [Related]
80. Evaluation of the constitutive properties of native, tissue engineered, and degenerated articular cartilage. Seifzadeh A; Oguamanam DC; Papini M Clin Biomech (Bristol, Avon); 2012 Oct; 27(8):852-8. PubMed ID: 22578740 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]