These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 21844379)

  • 1. Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes.
    Armstrong FA; Hirst J
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14049-54. PubMed ID: 21844379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme.
    Reda T; Plugge CM; Abram NJ; Hirst J
    Proc Natl Acad Sci U S A; 2008 Aug; 105(31):10654-8. PubMed ID: 18667702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.
    Rakowski DuBois M; DuBois DL
    Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators.
    Badalyan A; Stahl SS
    Nature; 2016 Jul; 535(7612):406-10. PubMed ID: 27350245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observations of redox centers and their participation in rapid catalytic electron transport.
    Sucheta A; Cammack R; Weiner J; Armstrong FA
    Biochemistry; 1993 May; 32(20):5455-65. PubMed ID: 8499449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen cycling by enzymes: electrocatalysis and implications for future energy technology.
    Vincent KA; Cracknell JA; Parkin A; Armstrong FA
    Dalton Trans; 2005 Nov; (21):3397-403. PubMed ID: 16234917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How light-harvesting semiconductors can alter the bias of reversible electrocatalysts in favor of H2 production and CO2 reduction.
    Bachmeier A; Wang VC; Woolerton TW; Bell S; Fontecilla-Camps JC; Can M; Ragsdale SW; Chaudhary YS; Armstrong FA
    J Am Chem Soc; 2013 Oct; 135(40):15026-32. PubMed ID: 24070184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding and Design of Bidirectional and Reversible Catalysts of Multielectron, Multistep Reactions.
    Fourmond V; Wiedner ES; Shaw WJ; Léger C
    J Am Chem Soc; 2019 Jul; 141(28):11269-11285. PubMed ID: 31283209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocatalytic metal hydride generation using CPET mediators.
    Dey S; Masero F; Brack E; Fontecave M; Mougel V
    Nature; 2022 Jul; 607(7919):499-506. PubMed ID: 35859199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value.
    Pershad HR; Duff JL; Heering HA; Duin EC; Albracht SP; Armstrong FA
    Biochemistry; 1999 Jul; 38(28):8992-9. PubMed ID: 10413472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations of the efficient electrocatalytic interconversions of carbon dioxide and carbon monoxide by nickel-containing carbon monoxide dehydrogenases.
    Wang VC; Ragsdale SW; Armstrong FA
    Met Ions Life Sci; 2014; 14():71-97. PubMed ID: 25416391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Descriptors and Thermodynamic Limitations of Electrocatalytic Carbon Dioxide Reduction on Rutile Oxide Surfaces.
    Bhowmik A; Vegge T; Hansen HA
    ChemSusChem; 2016 Nov; 9(22):3230-3243. PubMed ID: 27781396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media.
    Becker R; Amirjalayer S; Li P; Woutersen S; Reek JN
    Sci Adv; 2016 Jan; 2(1):e1501014. PubMed ID: 26844297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly selective electrocatalytic conversion of CO2 to CO at -0.57 V (NHE) by carbon monoxide dehydrogenase from Moorella thermoacetica.
    Shin W; Lee SH; Shin JW; Lee SP; Kim Y
    J Am Chem Soc; 2003 Dec; 125(48):14688-9. PubMed ID: 14640627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Molecular Proceedings of Biological Hydrogen Turnover.
    Haumann M; Stripp ST
    Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyoxometalate-mediated electron transfer-oxygen transfer oxidation of cellulose and hemicellulose to synthesis gas.
    Sarma BB; Neumann R
    Nat Commun; 2014 Aug; 5():4621. PubMed ID: 25082188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.
    Duan L; Wang L; Li F; Li F; Sun L
    Acc Chem Res; 2015 Jul; 48(7):2084-96. PubMed ID: 26131964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of the overpotential of a [FeFe] hydrogenase mimic by a synthetic second coordination sphere.
    Nurttila SS; Zaffaroni R; Mathew S; Reek JNH
    Chem Commun (Camb); 2019 Mar; 55(21):3081-3084. PubMed ID: 30785463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes.
    Saleh FS; Rahman MR; Okajima T; Mao L; Ohsaka T
    Bioelectrochemistry; 2011 Feb; 80(2):121-7. PubMed ID: 20667793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-processing CH4 and oxygenates on Mo/H-ZSM-5: 2. CH4-CO2 and CH4-HCOOH mixtures.
    Bedard J; Hong DY; Bhan A
    Phys Chem Chem Phys; 2013 Aug; 15(29):12173-9. PubMed ID: 23703320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.