BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 21844485)

  • 21. Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin II are prevented by AMP-activated protein kinase.
    Stuck BJ; Lenski M; Böhm M; Laufs U
    J Biol Chem; 2008 Nov; 283(47):32562-9. PubMed ID: 18790741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adenosine monophosphate-activated protein kinase attenuates cardiomyocyte hypertrophy through regulation of FOXO3a/MAFbx signaling pathway.
    Chen B; Wu Q; Xiong Z; Ma Y; Yu S; Chen D; Huang S; Dong Y
    Acta Biochim Biophys Sin (Shanghai); 2016 Sep; 48(9):827-32. PubMed ID: 27521792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AMP-activated protein kinase in metabolic control and insulin signaling.
    Towler MC; Hardie DG
    Circ Res; 2007 Feb; 100(3):328-41. PubMed ID: 17307971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Failure to sense energy depletion may be a novel therapeutic target in chronic kidney disease.
    Kikuchi H; Sasaki E; Nomura N; Mori T; Minamishima YA; Yoshizaki Y; Takahashi N; Furusho T; Arai Y; Mandai S; Yamashita T; Ando F; Maejima Y; Isobe K; Okado T; Rai T; Uchida S; Sohara E
    Kidney Int; 2019 Jan; 95(1):123-137. PubMed ID: 30455054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated MuRF1 Expression.
    Du Bois P; Pablo Tortola C; Lodka D; Kny M; Schmidt F; Song K; Schmidt S; Bassel-Duby R; Olson EN; Fielitz J
    Circ Res; 2015 Aug; 117(5):424-36. PubMed ID: 26137861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Angiotensin II infusion induces marked diaphragmatic skeletal muscle atrophy.
    Rezk BM; Yoshida T; Semprun-Prieto L; Higashi Y; Sukhanov S; Delafontaine P
    PLoS One; 2012; 7(1):e30276. PubMed ID: 22276172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diabetes-Related Ankyrin Repeat Protein (DARP/Ankrd23) Modifies Glucose Homeostasis by Modulating AMPK Activity in Skeletal Muscle.
    Shimoda Y; Matsuo K; Kitamura Y; Ono K; Ueyama T; Matoba S; Yamada H; Wu T; Chen J; Emoto N; Ikeda K
    PLoS One; 2015; 10(9):e0138624. PubMed ID: 26398569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. α2 isoform-specific activation of 5'adenosine monophosphate-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside at a physiological level activates glucose transport and increases glucose transporter 4 in mouse skeletal muscle.
    Nakano M; Hamada T; Hayashi T; Yonemitsu S; Miyamoto L; Toyoda T; Tanaka S; Masuzaki H; Ebihara K; Ogawa Y; Hosoda K; Inoue G; Yoshimasa Y; Otaka A; Fushiki T; Nakao K
    Metabolism; 2006 Mar; 55(3):300-8. PubMed ID: 16483872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Central infusion of leptin does not increase AMPK signaling in skeletal muscle of sheep.
    Laker RC; Henry BA; Wadley GD; Clarke IJ; Canny BJ; McConell GK
    Am J Physiol Regul Integr Comp Physiol; 2011 Feb; 300(2):R511-8. PubMed ID: 21148475
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AMP-activated protein kinase stabilizes FOXO3 in primary myotubes.
    Sanchez AMJ; Candau R; Bernardi H
    Biochem Biophys Res Commun; 2018 May; 499(3):493-498. PubMed ID: 29580989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AICAR induces cyclooxygenase-2 expression through AMP-activated protein kinase-transforming growth factor-beta-activated kinase 1-p38 mitogen-activated protein kinase signaling pathway.
    Chang MY; Ho FM; Wang JS; Kang HC; Chang Y; Ye ZX; Lin WW
    Biochem Pharmacol; 2010 Oct; 80(8):1210-20. PubMed ID: 20615388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of the atypical protein kinase Czeta in regulation of 5'-AMP-activated protein kinase in cardiac and skeletal muscle.
    Ussher JR; Jaswal JS; Wagg CS; Armstrong HE; Lopaschuk DG; Keung W; Lopaschuk GD
    Am J Physiol Endocrinol Metab; 2009 Aug; 297(2):E349-57. PubMed ID: 19625676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CCL5 upregulates activation of AMP-activated protein kinases in vascular smooth muscle cells of spontaneously hypertensive rats.
    Kim HY; Cha HJ; Kim HS
    Cytokine; 2014 Jun; 67(2):77-84. PubMed ID: 24656927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes.
    Krause U; Bertrand L; Hue L
    Eur J Biochem; 2002 Aug; 269(15):3751-9. PubMed ID: 12153572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissociation of AMP-activated protein kinase and p38 mitogen-activated protein kinase signaling in skeletal muscle.
    Ho RC; Fujii N; Witters LA; Hirshman MF; Goodyear LJ
    Biochem Biophys Res Commun; 2007 Oct; 362(2):354-9. PubMed ID: 17709097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial dysfunction/NLRP3 inflammasome axis contributes to angiotensin II-induced skeletal muscle wasting via PPAR-γ.
    Liu Y; Bi X; Zhang Y; Wang Y; Ding W
    Lab Invest; 2020 May; 100(5):712-726. PubMed ID: 31857693
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AMP-activated protein kinase activates transcription of the UCP3 and HKII genes in rat skeletal muscle.
    Stoppani J; Hildebrandt AL; Sakamoto K; Cameron-Smith D; Goodyear LJ; Neufer PD
    Am J Physiol Endocrinol Metab; 2002 Dec; 283(6):E1239-48. PubMed ID: 12388122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta -D-ribofuranoside.
    Saha AK; Schwarsin AJ; Roduit R; Masse F; Kaushik V; Tornheim K; Prentki M; Ruderman NB
    J Biol Chem; 2000 Aug; 275(32):24279-83. PubMed ID: 10854420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new role for AMP-activated protein kinase in the circadian regulation of L-type voltage-gated calcium channels in late-stage embryonic retinal photoreceptors.
    Huang CC; Shi L; Lin CH; Kim AJ; Ko ML; Ko GY
    J Neurochem; 2015 Nov; 135(4):727-41. PubMed ID: 26337027
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elevated p70S6K phosphorylation in rat soleus muscle during the early stage of unloading: Causes and consequences.
    Belova SP; Vilchinskaya NA; Mochalova EP; Mirzoev TM; Nemirovskaya TL; Shenkman BS
    Arch Biochem Biophys; 2019 Oct; 674():108105. PubMed ID: 31518555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.