These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21844642)

  • 1. Preparation of graphene by jet cavitation.
    Shen Z; Li J; Yi M; Zhang X; Ma S
    Nanotechnology; 2011 Sep; 22(36):365306. PubMed ID: 21844642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of graphite nanoplatelets and graphene sheets.
    Geng Y; Wang SJ; Kim JK
    J Colloid Interface Sci; 2009 Aug; 336(2):592-8. PubMed ID: 19414181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte.
    Wang J; Manga KK; Bao Q; Loh KP
    J Am Chem Soc; 2011 Jun; 133(23):8888-91. PubMed ID: 21557613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Processing Parameters on Massive Production of Graphene by Jet Cavitation.
    Liang S; Shen Z; Yi M; Liu L; Zhang X; Cai C; Ma S
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2686-94. PubMed ID: 26353482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of graphene flakes composed of multi-layer graphene sheets using a thermal plasma jet system.
    Kim J; Heo SB; Gu GH; Suh JS
    Nanotechnology; 2010 Mar; 21(9):095601. PubMed ID: 20110587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid exfoliation of defect-free graphene.
    Coleman JN
    Acc Chem Res; 2013 Jan; 46(1):14-22. PubMed ID: 22433117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-quality thin graphene films from fast electrochemical exfoliation.
    Su CY; Lu AY; Xu Y; Chen FR; Khlobystov AN; Li LJ
    ACS Nano; 2011 Mar; 5(3):2332-9. PubMed ID: 21309565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide.
    Fan ZJ; Kai W; Yan J; Wei T; Zhi LJ; Feng J; Ren YM; Song LP; Wei F
    ACS Nano; 2011 Jan; 5(1):191-8. PubMed ID: 21230006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor.
    Stengl V
    Chemistry; 2012 Oct; 18(44):14047-54. PubMed ID: 23015465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-based composite materials.
    Stankovich S; Dikin DA; Dommett GH; Kohlhaas KM; Zimney EJ; Stach EA; Piner RD; Nguyen ST; Ruoff RS
    Nature; 2006 Jul; 442(7100):282-6. PubMed ID: 16855586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites.
    Wang Y; Shi Z; Yin J
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1127-33. PubMed ID: 21438576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation.
    Rangappa D; Sone K; Wang M; Gautam UK; Golberg D; Itoh H; Ichihara M; Honma I
    Chemistry; 2010 Jun; 16(22):6488-94. PubMed ID: 20414913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route.
    Pan S; Aksay IA
    ACS Nano; 2011 May; 5(5):4073-83. PubMed ID: 21469697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueous only route toward graphene from graphite oxide.
    Liao KH; Mittal A; Bose S; Leighton C; Mkhoyan KA; Macosko CW
    ACS Nano; 2011 Feb; 5(2):1253-8. PubMed ID: 21271739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput synthesis of graphene by intercalation-exfoliation of graphite oxide and study of ionic screening in graphene transistor.
    Ang PK; Wang S; Bao Q; Thong JT; Loh KP
    ACS Nano; 2009 Nov; 3(11):3587-94. PubMed ID: 19788171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide.
    Long D; Li W; Ling L; Miyawaki J; Mochida I; Yoon SH
    Langmuir; 2010 Oct; 26(20):16096-102. PubMed ID: 20863088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile preparation of nitrogen-doped few-layer graphene via supercritical reaction.
    Qian W; Cui X; Hao R; Hou Y; Zhang Z
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2259-64. PubMed ID: 21644571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation.
    Ding YH; Zhang P; Zhuo Q; Ren HM; Yang ZM; Jiang Y
    Nanotechnology; 2011 May; 22(21):215601. PubMed ID: 21451219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low interfacial contact resistance of Al-graphene composites via interface engineering.
    Hahm MG; Nam J; Choi M; Park CD; Cho B; Kazunori S; Kim YA; Kim DY; Endo M; Kim DH; Vajtai R; Ajayan PM; Song SM
    Nanotechnology; 2015 May; 26(21):215603. PubMed ID: 25944839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets.
    Chen D; Zhu H; Liu T
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3702-8. PubMed ID: 21067202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.