BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21844681)

  • 1. Expression of S-adenosyl methionine decarboxylase gene for polyamine accumulation in Egyptian cotton Giza 88 and Giza 90.
    Momtaz OA; Hussein EM; Fahmy EM; Ahmed SE
    GM Crops; 2010; 1(4):257-66. PubMed ID: 21844681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spermine facilitates recovery from drought but does not confer drought tolerance in transgenic rice plants expressing Datura stramonium S-adenosylmethionine decarboxylase.
    Peremarti A; Bassie L; Christou P; Capell T
    Plant Mol Biol; 2009 Jun; 70(3):253-64. PubMed ID: 19234674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-L-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine.
    Thu-Hang P; Bassie L; Safwat G; Trung-Nghia P; Christou P; Capell T
    Plant Physiol; 2002 Aug; 129(4):1744-54. PubMed ID: 12177487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive S-adenosylmethionine decarboxylase gene expression increases drought tolerance through inhibition of reactive oxygen species accumulation in Arabidopsis.
    Wi SJ; Kim SJ; Kim WT; Park KY
    Planta; 2014 May; 239(5):979-88. PubMed ID: 24477528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress.
    Cheng L; Zou Y; Ding S; Zhang J; Yu X; Cao J; Lu G
    J Integr Plant Biol; 2009 May; 51(5):489-99. PubMed ID: 19508360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions.
    Pasapula V; Shen G; Kuppu S; Paez-Valencia J; Mendoza M; Hou P; Chen J; Qiu X; Zhu L; Zhang X; Auld D; Blumwald E; Zhang H; Gaxiola R; Payton P
    Plant Biotechnol J; 2011 Jan; 9(1):88-99. PubMed ID: 20492547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium hirsutum.
    Maqbool A; Abbas W; Rao AQ; Irfan M; Zahur M; Bakhsh A; Riazuddin S; Husnain T
    Biotechnol Prog; 2010; 26(1):21-5. PubMed ID: 19847887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cotton S-adenosylmethionine decarboxylase-mediated spermine biosynthesis is required for salicylic acid- and leucine-correlated signaling in the defense response to Verticillium dahliae.
    Mo HJ; Sun YX; Zhu XL; Wang XF; Zhang Y; Yang J; Yan GJ; Ma ZY
    Planta; 2016 Apr; 243(4):1023-39. PubMed ID: 26757733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The study of transformation of tobacco with the stress responsible gene BoRS1 from Brassica oleracea var. acephala].
    Tang DQ; Qian HM; Zhao LX; Tang KX; Huang DF
    Sheng Wu Gong Cheng Xue Bao; 2005 May; 21(3):489-92. PubMed ID: 16108381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ectopic expression of GhSAMDC
    Zhu H; Tian W; Zhu X; Tang X; Wu L; Hu X; Jin S
    Sci Rep; 2020 Sep; 10(1):14418. PubMed ID: 32879344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cotton gene encoding a plasma membrane aquaporin is involved in seedling development and in response to drought stress.
    Zhang J; Li D; Zou D; Luo F; Wang X; Zheng Y; Li X
    Acta Biochim Biophys Sin (Shanghai); 2013 Feb; 45(2):104-14. PubMed ID: 23178915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco.
    Moschou PN; Paschalidis KA; Delis ID; Andriopoulou AH; Lagiotis GD; Yakoumakis DI; Roubelakis-Angelakis KA
    Plant Cell; 2008 Jun; 20(6):1708-24. PubMed ID: 18577660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a "stay-green" phenotype and improves stress tolerance under moderate drought conditions.
    Yan J; He C; Wang J; Mao Z; Holaday SA; Allen RD; Zhang H
    Plant Cell Physiol; 2004 Aug; 45(8):1007-14. PubMed ID: 15356326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of Thellungiella halophila H(+)-PPase (TsVP) in cotton enhances drought stress resistance of plants.
    Lv SL; Lian LJ; Tao PL; Li ZX; Zhang KW; Zhang JR
    Planta; 2009 Mar; 229(4):899-910. PubMed ID: 19130078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salt and drought tolerance of transgenic salvia miltiorrhiza Bunge with the TaLEA1 gene.
    Han LM; Yu JN; Ju WF
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Apr; 33(2):109-14. PubMed ID: 17452795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis.
    Wang J; Sun PP; Chen CL; Wang Y; Fu XZ; Liu JH
    J Exp Bot; 2011 May; 62(8):2899-914. PubMed ID: 21282323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants.
    Wei A; He C; Li B; Li N; Zhang J
    Plant Biotechnol J; 2011 Feb; 9(2):216-29. PubMed ID: 20633239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in polyamine synthesis and concentrations during chick embryo development.
    Löwkvist B; Emanuelsson H; Heby O
    J Exp Zool; 1985 Jun; 234(3):375-82. PubMed ID: 4056678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of a human S-adenosylmethionine decarboxylase cDNA in transgenic tobacco and its effects on polyamine biosynthesis.
    Noh EW; Minocha SC
    Transgenic Res; 1994 Jan; 3(1):26-35. PubMed ID: 8142949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of the CaHB12 transcription factor in cotton (Gossypium hirsutum) improves drought tolerance.
    Basso MF; Costa JA; Ribeiro TP; Arraes FBM; Lourenço-Tessutti IT; Macedo AF; Neves MRD; Nardeli SM; Arge LW; Perez CEA; Silva PLR; de Macedo LLP; Lisei-de-Sa ME; Santos Amorim RM; Pinto ERC; Silva MCM; Morgante CV; Floh EIS; Alves-Ferreira M; Grossi-de-Sa MF
    Plant Physiol Biochem; 2021 Aug; 165():80-93. PubMed ID: 34034163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.