These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21845044)

  • 41. The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly l-lactide (F-u-HA/PLLA).
    Shikinami Y; Matsusue Y; Nakamura T
    Biomaterials; 2005 Sep; 26(27):5542-51. PubMed ID: 15860210
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of in vitro and in vivo bioactivity: cuttlefish-bone-derived hydroxyapatite and synthetic hydroxyapatite granules as a bone graft substitute.
    Kim BS; Kang HJ; Yang SS; Lee J
    Biomed Mater; 2014 Apr; 9(2):025004. PubMed ID: 24487123
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Histomorphometric evaluation of strontium-containing nanostructured hydroxyapatite as bone substitute in sheep.
    Machado CP; Sartoretto SC; Alves AT; Lima IB; Rossi AM; Granjeiro JM; Calasans-Maia MD
    Braz Oral Res; 2016; 30(1):e45. PubMed ID: 27191738
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ectopic osteogenesis and scaffold biodegradation of nano-hydroxyapatite-chitosan in a rat model.
    He Y; Dong Y; Cui F; Chen X; Lin R
    PLoS One; 2015; 10(8):e0135366. PubMed ID: 26258851
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.
    Rojbani H; Nyan M; Ohya K; Kasugai S
    J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering.
    Laschke MW; Strohe A; Menger MD; Alini M; Eglin D
    Acta Biomater; 2010 Jun; 6(6):2020-7. PubMed ID: 20004748
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydroxyapatite granule/carrier composites promote new bone formation in cortical defects.
    Liljensten EL; Attaelmanan AG; Larsson C; Ljusberg-Wahren H; Danielsen N; Hirsch JM; Thomsen P
    Clin Implant Dent Relat Res; 2000; 2(1):50-9. PubMed ID: 11359275
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis and Evaluation of a Chitosan-Silica-Based Bone Substitute for Tissue Engineering.
    Alvarez Echazú MI; Renou SJ; Alvarez GS; Desimone MF; Olmedo DG
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362167
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Injectable Chitin-Poly(ε-caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering.
    Arun Kumar R; Sivashanmugam A; Deepthi S; Iseki S; Chennazhi KP; Nair SV; Jayakumar R
    ACS Appl Mater Interfaces; 2015 May; 7(18):9399-409. PubMed ID: 25893690
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo.
    Dhivya S; Saravanan S; Sastry TP; Selvamurugan N
    J Nanobiotechnology; 2015 Jun; 13():40. PubMed ID: 26065678
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vivo study of a bioactive nanoparticle-gelatin composite scaffold for bone defect repair in rabbits.
    Hou G; Zhou F; Guo Y; Yang Z; Li A; Wang C; Qiu D
    J Mater Sci Mater Med; 2017 Oct; 28(11):181. PubMed ID: 29022190
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effectiveness of tissue engineered three-dimensional bioactive graft on bone healing and regeneration: an in vivo study with significant clinical value.
    Shahrezaie M; Moshiri A; Shekarchi B; Oryan A; Maffulli N; Parvizi J
    J Tissue Eng Regen Med; 2018 Apr; 12(4):936-960. PubMed ID: 28714236
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model.
    Boos AM; Weigand A; Deschler G; Gerber T; Arkudas A; Kneser U; Horch RE; Beier JP
    Int J Nanomedicine; 2014; 9():5317-39. PubMed ID: 25429218
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced bone regeneration with a novel synthetic bone substitute in combination with a new natural cross-linked collagen membrane: radiographic and histomorphometric study.
    Calvo-Guirado JL; Ramírez-Fernández MP; Maté-Sánchez JE; Bruno N; Velasquez P; de Aza PN
    Clin Oral Implants Res; 2015 Apr; 26(4):454-464. PubMed ID: 24720519
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bone regeneration with algae-derived hydroxyapatite: a pilot histologic and histomorphometric study in rabbit tibia defects.
    Scarano A; Perrotti V; Degidi M; Piattelli A; Iezzi G
    Int J Oral Maxillofac Implants; 2012; 27(2):336-40. PubMed ID: 22442772
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Histopathological, histomorphometrical, and radiological evaluations of hydroxyapatite/bioactive glass and fluorapatite/bioactive glass nanocomposite foams as cell scaffolds in rat tibia: an in vivo study.
    Seyedmajidi M; Haghanifar S; Hajian-Tilaki K; Seyedmajidi S
    Biomed Mater; 2018 Jan; 13(2):025015. PubMed ID: 29133624
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bioinspired Composite Matrix Containing Hydroxyapatite-Silica Core-Shell Nanorods for Bone Tissue Engineering.
    A A; Menon D; T B S; Koyakutty M; Mohan CC; Nair SV; Nair MB
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):26707-26718. PubMed ID: 28741921
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig.
    Götz W; Lenz S; Reichert C; Henkel KO; Bienengräber V; Pernicka L; Gundlach KK; Gredes T; Gerber T; Gedrange T; Heinemann F
    Folia Histochem Cytobiol; 2010 Dec; 48(4):589-96. PubMed ID: 21478102
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antibacterial alginate/nano-hydroxyapatite composites for bone tissue engineering: Assessment of their bioactivity, biocompatibility, and antibacterial activity.
    Benedini L; Laiuppa J; Santillán G; Baldini M; Messina P
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111101. PubMed ID: 32600705
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydroxyapatite Dome for Bone Neoformation in Rabbit Tibia.
    Maeda NT; Yoshimoto M; Allegrini S; Bressiani AH
    Int J Oral Maxillofac Implants; 2016; 31(3):571-9. PubMed ID: 27183066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.