These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 21845082)

  • 1. Predictivity approach for quantitative structure-property models. Application for blood-brain barrier permeation of diverse drug-like compounds.
    Bolboacă SD; Jäntschi L
    Int J Mol Sci; 2011; 12(7):4348-64. PubMed ID: 21845082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing Enhanced Blood-Brain Barrier Permeability Models: Integrating External Bio-Assay Data in QSAR Modeling.
    Wang W; Kim MT; Sedykh A; Zhu H
    Pharm Res; 2015 Sep; 32(9):3055-65. PubMed ID: 25862462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simple Method to Predict Blood-Brain Barrier Permeability of Drug- Like Compounds Using Classification Trees.
    Castillo-Garit JA; Casanola-Martin GM; Le-Thi-Thu H; Pham-The H; Barigye SJ
    Med Chem; 2017; 13(7):664-669. PubMed ID: 28185535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer Assisted Models for Blood Brain Barrier Permeation of 1, 5-Benzodiazepines.
    Dhavale RP; Choudhari PB; Bhatia MS
    Curr Comput Aided Drug Des; 2021; 17(2):187-200. PubMed ID: 32003700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational prediction of blood-brain barrier permeability using decision tree induction.
    Suenderhauf C; Hammann F; Huwyler J
    Molecules; 2012 Aug; 17(9):10429-45. PubMed ID: 22941223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ADME evaluation in drug discovery. 1. Applications of genetic algorithms to the prediction of blood-brain partitioning of a large set of drugs.
    Hou T; Xu X
    J Mol Model; 2002 Dec; 8(12):337-49. PubMed ID: 12541001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of topochemical models for the prediction of permeability through the blood-brain barrier.
    Dureja H; Madan AK
    Acta Pharm; 2007 Dec; 57(4):451-67. PubMed ID: 18165189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico ADME modelling: prediction models for blood-brain barrier permeation using a systematic variable selection method.
    Narayanan R; Gunturi SB
    Bioorg Med Chem; 2005 Apr; 13(8):3017-28. PubMed ID: 15781411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of blood-brain barrier permeation of α-adrenergic and imidazoline receptor ligands using PAMPA technique and quantitative-structure permeability relationship analysis.
    Vucicevic J; Nikolic K; Dobričić V; Agbaba D
    Eur J Pharm Sci; 2015 Feb; 68():94-105. PubMed ID: 25542610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-silico prediction of blood-brain barrier permeability.
    Yan A; Liang H; Chong Y; Nie X; Yu C
    SAR QSAR Environ Res; 2013 Jan; 24(1):61-74. PubMed ID: 23092117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the utility of momentum-space descriptors for predicting blood-brain barrier penetration.
    Al-Fahemi JH; Cooper DL; Allan NL
    J Mol Graph Model; 2007 Oct; 26(3):607-12. PubMed ID: 17300970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Qualitative and quantitative structure-activity relationship modelling for predicting blood-brain barrier permeability of structurally diverse chemicals.
    Gupta S; Basant N; Singh KP
    SAR QSAR Environ Res; 2015; 26(2):95-124. PubMed ID: 25629764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting penetration across the blood-brain barrier from simple descriptors and fragmentation schemes.
    Zhao YH; Abraham MH; Ibrahim A; Fish PV; Cole S; Lewis ML; de Groot MJ; Reynolds DP
    J Chem Inf Model; 2007; 47(1):170-5. PubMed ID: 17238262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partial least square and hierarchical clustering in ADMET modeling: prediction of blood-brain barrier permeation of α-adrenergic and imidazoline receptor ligands.
    Nikolic K; Filipic S; Smoliński A; Kaliszan R; Agbaba D
    J Pharm Pharm Sci; 2013; 16(4):622-47. PubMed ID: 24210068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Deep Neural Network Models for the Prediction of the Blood-Brain Barrier Permeability for Diverse Organic Compounds.
    Radchenko EV; Dyabina AS; Palyulin VA
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33322142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis.
    Iyer M; Mishra R; Han Y; Hopfinger AJ
    Pharm Res; 2002 Nov; 19(11):1611-21. PubMed ID: 12458666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topochemical models for the prediction of permeability through blood-brain barrier.
    Dureja H; Madan AK
    Int J Pharm; 2006 Oct; 323(1-2):27-33. PubMed ID: 16815653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive model of blood-brain barrier penetration of organic compounds.
    Ma XL; Chen C; Yang J
    Acta Pharmacol Sin; 2005 Apr; 26(4):500-12. PubMed ID: 15780201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding affinity of triphenyl acrylonitriles to estrogen receptors: quantitative structure-activity relationships.
    Bolboacă SD; Marta MM; Jäntschi L
    Folia Med (Plovdiv); 2010; 52(3):37-45. PubMed ID: 21053672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood-brain barrier permeability mechanisms in view of quantitative structure-activity relationships (QSAR).
    Bujak R; Struck-Lewicka W; Kaliszan M; Kaliszan R; Markuszewski MJ
    J Pharm Biomed Anal; 2015 Apr; 108():29-37. PubMed ID: 25703237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.