These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 21845275)
1. A novel preparation of small TiO₂ nanoparticle and its application to dye-sensitized solar cells with binder-free paste at low temperature. Fan K; Gong C; Peng T; Chen J; Xia J Nanoscale; 2011 Sep; 3(9):3900-6. PubMed ID: 21845275 [TBL] [Abstract][Full Text] [Related]
2. Anatase TiO(2) nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells. Yu J; Fan J; Lv K Nanoscale; 2010 Oct; 2(10):2144-9. PubMed ID: 20852787 [TBL] [Abstract][Full Text] [Related]
3. Dye-sensitized solar cells based on multiwalled carbon nanotube-titania/titania bilayer structure photoelectrode. Lin WJ; Hsu CT; Tsai YC J Colloid Interface Sci; 2011 Jun; 358(2):562-6. PubMed ID: 21463866 [TBL] [Abstract][Full Text] [Related]
4. Self-assembled TiO₂ with increased photoelectron production, and improved conduction and transfer: enhancing photovoltaic performance of dye-sensitized solar cells. Ahmed S; Du Pasquier A; Birnie DP; Asefa T ACS Appl Mater Interfaces; 2011 Aug; 3(8):3002-10. PubMed ID: 21714503 [TBL] [Abstract][Full Text] [Related]
5. Incorporation of graphenes in nanostructured TiO(2) films via molecular grafting for dye-sensitized solar cell application. Tang YB; Lee CS; Xu J; Liu ZT; Chen ZH; He Z; Cao YL; Yuan G; Song H; Chen L; Luo L; Cheng HM; Zhang WJ; Bello I; Lee ST ACS Nano; 2010 Jun; 4(6):3482-8. PubMed ID: 20455548 [TBL] [Abstract][Full Text] [Related]
6. Effect of the rutile content on the photovoltaic performance of the dye-sensitized solar cells composed of mixed-phase TiO2 photoelectrodes. Yun TK; Park SS; Kim D; Shim JH; Bae JY; Huh S; Won YS Dalton Trans; 2012 Jan; 41(4):1284-8. PubMed ID: 22124477 [TBL] [Abstract][Full Text] [Related]
7. Facile synthesis of TiO2 inverse opal electrodes for dye-sensitized solar cells. Shin JH; Kang JH; Jin WM; Park JH; Cho YS; Moon JH Langmuir; 2011 Jan; 27(2):856-60. PubMed ID: 21155579 [TBL] [Abstract][Full Text] [Related]
8. Increasing photocurrents in dye sensitized solar cells with tantalum-doped titanium oxide photoanodes obtained by laser ablation. Ghosh R; Hara Y; Alibabaei L; Hanson K; Rangan S; Bartynski R; Meyer TJ; Lopez R ACS Appl Mater Interfaces; 2012 Sep; 4(9):4566-70. PubMed ID: 22869506 [TBL] [Abstract][Full Text] [Related]
9. Nanoparticle self-assembled hollow TiO2 spheres with well matching visible light scattering for high performance dye-sensitized solar cells. Pang H; Yang H; Guo CX; Lu J; Li CM Chem Commun (Camb); 2012 Sep; 48(70):8832-4. PubMed ID: 22836665 [TBL] [Abstract][Full Text] [Related]
10. Zn-doped nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells. Zhu G; Cheng Z; Lv T; Pan L; Zhao Q; Sun Z Nanoscale; 2010 Jul; 2(7):1229-32. PubMed ID: 20648354 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of dye-sensitized photocurrents by gold nanoparticles: effects of dye-particle spacing. Kawawaki T; Takahashi Y; Tatsuma T Nanoscale; 2011 Jul; 3(7):2865-7. PubMed ID: 21681292 [TBL] [Abstract][Full Text] [Related]
12. Improved dye sensitized solar cell performance in larger cell size by using TiO₂ nanotubes. Zhang Y; Khamwannah J; Kim H; Noh SY; Yang H; Jin S Nanotechnology; 2013 Feb; 24(4):045401. PubMed ID: 23299151 [TBL] [Abstract][Full Text] [Related]
13. Surface-treated TiO2 nanoparticles for dye-sensitized solar cells with remarkably enhanced performance. Xin X; Scheiner M; Ye M; Lin Z Langmuir; 2011 Dec; 27(23):14594-8. PubMed ID: 22013973 [TBL] [Abstract][Full Text] [Related]
14. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells. He Z; Guai G; Liu J; Guo C; Loo JS; Li CM; Tan TT Nanoscale; 2011 Nov; 3(11):4613-6. PubMed ID: 22006266 [TBL] [Abstract][Full Text] [Related]
15. High-performance plastic dye-sensitized solar cells based on low-cost commercial P25 TiO2 and organic dye. Yin X; Xue Z; Wang L; Cheng Y; Liu B ACS Appl Mater Interfaces; 2012 Mar; 4(3):1709-15. PubMed ID: 22324725 [TBL] [Abstract][Full Text] [Related]
16. Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency. Shao W; Gu F; Li C; Lu M Inorg Chem; 2010 Jun; 49(12):5453-9. PubMed ID: 20507078 [TBL] [Abstract][Full Text] [Related]
17. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327 [TBL] [Abstract][Full Text] [Related]
18. Highly catalytic carbon nanotube/Pt nanohybrid-based transparent counter electrode for efficient dye-sensitized solar cells. Chen HY; Liao JY; Lei BX; Kuang DB; Fang Y; Su CY Chem Asian J; 2012 Aug; 7(8):1795-802. PubMed ID: 22570255 [TBL] [Abstract][Full Text] [Related]
19. Preparation of TiO₂ nanowires/nanotubes using polycarbonate membranes and their uses in dye-sensitized solar cells. Roh DK; Patel R; Ahn SH; Kim DJ; Kim JH Nanoscale; 2011 Oct; 3(10):4162-9. PubMed ID: 21894346 [TBL] [Abstract][Full Text] [Related]
20. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Im JH; Lee CR; Lee JW; Park SW; Park NG Nanoscale; 2011 Oct; 3(10):4088-93. PubMed ID: 21897986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]