These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 21845506)
1. Prediction of the mechanical behaviour of crystalline solids. Shariare MH; Leusen FJ; de Matas M; York P; Anwar J Pharm Res; 2012 Jan; 29(1):319-31. PubMed ID: 21845506 [TBL] [Abstract][Full Text] [Related]
2. Inverse gas chromatography a tool to follow physicochemical modifications of pharmaceutical solids: Crystal habit and particles size surface effects. Cares-Pacheco MG; Calvet R; Vaca-Medina G; Rouilly A; Espitalier F Int J Pharm; 2015 Oct; 494(1):113-26. PubMed ID: 26248145 [TBL] [Abstract][Full Text] [Related]
3. An exploration of inter-relationships between contact angle, inverse phase gas chromatography and triboelectric charging data. Ahfat NM; Buckton G; Burrows R; Ticehurst MD Eur J Pharm Sci; 2000 Jan; 9(3):271-6. PubMed ID: 10594384 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the surface energy of pharmaceutical powders by inverse gas chromatography. Grimsey IM; Feeley JC; York P J Pharm Sci; 2002 Feb; 91(2):571-83. PubMed ID: 11835214 [TBL] [Abstract][Full Text] [Related]
5. Formulation pre-screening of inhalation powders using computational atom-atom systematic search method. Ramachandran V; Murnane D; Hammond RB; Pickering J; Roberts KJ; Soufian M; Forbes B; Jaffari S; Martin GP; Collins E; Pencheva K Mol Pharm; 2015 Jan; 12(1):18-33. PubMed ID: 25380027 [TBL] [Abstract][Full Text] [Related]
6. Use of surface energy distributions by inverse gas chromatography to understand mechanofusion processing and functionality of lactose coated with magnesium stearate. Das SC; Zhou Q; Morton DA; Larson I; Stewart PJ Eur J Pharm Sci; 2011 Jul; 43(4):325-33. PubMed ID: 21621612 [TBL] [Abstract][Full Text] [Related]
7. Inverse gas chromatography: investigating whether the technique preferentially probes high energy sites for mixtures of crystalline and amorphous lactose. Newell HE; Buckton G Pharm Res; 2004 Aug; 21(8):1440-4. PubMed ID: 15359579 [TBL] [Abstract][Full Text] [Related]
8. Effect of crystal habits on the surface energy and cohesion of crystalline powders. Shah UV; Olusanmi D; Narang AS; Hussain MA; Gamble JF; Tobyn MJ; Heng JY Int J Pharm; 2014 Sep; 472(1-2):140-7. PubMed ID: 24928138 [TBL] [Abstract][Full Text] [Related]
9. Anisotropic surface chemistry of crystalline pharmaceutical solids. Heng JY; Bismarck A; Williams DR AAPS PharmSciTech; 2006 Oct; 7(4):84. PubMed ID: 17233537 [TBL] [Abstract][Full Text] [Related]
10. Measurement of the surface energy of lubricated pharmaceutical powders by inverse gas chromatography. Swaminathan V; Cobb J; Saracovan I Int J Pharm; 2006 Apr; 312(1-2):158-65. PubMed ID: 16469458 [TBL] [Abstract][Full Text] [Related]
11. Relationships between surface energy analysis and functional characteristics of dairy powders. Kondor A; Hogan SA Food Chem; 2017 Dec; 237():1155-1162. PubMed ID: 28763964 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the cohesion-adhesion balance approach to colloidal probe atomic force microscopy and the measurement of Hansen partial solubility parameters by inverse gas chromatography for the prediction of dry powder inhalation performance. Jones MD; Buckton G Int J Pharm; 2016 Jul; 509(1-2):419-430. PubMed ID: 27265314 [TBL] [Abstract][Full Text] [Related]
13. Predicting the aerosol performance of dry powder inhalation formulations by interparticulate interaction analysis using inverse gas chromatography. Tong HH; Shekunov BY; York P; Chow AH J Pharm Sci; 2006 Jan; 95(1):228-33. PubMed ID: 16315225 [TBL] [Abstract][Full Text] [Related]
14. Physicochemical characterization of D-mannitol polymorphs: the challenging surface energy determination by inverse gas chromatography in the infinite dilution region. Cares-Pacheco MG; Vaca-Medina G; Calvet R; Espitalier F; Letourneau JJ; Rouilly A; Rodier E Int J Pharm; 2014 Nov; 475(1-2):69-81. PubMed ID: 25151549 [TBL] [Abstract][Full Text] [Related]
15. Determination of the polar and total surface energy distributions of particulates by inverse gas chromatography. Das SC; Larson I; Morton DA; Stewart PJ Langmuir; 2011 Jan; 27(2):521-3. PubMed ID: 21174410 [TBL] [Abstract][Full Text] [Related]
16. Influence of inverse gas chromatography measurement conditions on surface energy parameters of lactose monohydrate. Planinsek O; Zadnik J; Rozman S; Kunaver M; Dreu R; Srcic S Int J Pharm; 2003 Apr; 256(1-2):17-23. PubMed ID: 12695007 [TBL] [Abstract][Full Text] [Related]
17. Effect of milling on particle shape and surface energy heterogeneity of needle-shaped crystals. Ho R; Naderi M; Heng JY; Williams DR; Thielmann F; Bouza P; Keith AR; Thiele G; Burnett DJ Pharm Res; 2012 Oct; 29(10):2806-16. PubMed ID: 22872437 [TBL] [Abstract][Full Text] [Related]
18. Empirically augmented density functional theory for predicting lattice energies of aspirin, acetaminophen polymorphs, and ibuprofen homochiral and racemic crystals. Li T; Feng S Pharm Res; 2006 Oct; 23(10):2326-32. PubMed ID: 16927187 [TBL] [Abstract][Full Text] [Related]
19. Surface energy and interparticle forces correlations in model pMDI formulations. Traini D; Rogueda P; Young P; Price R Pharm Res; 2005 May; 22(5):816-25. PubMed ID: 15906178 [TBL] [Abstract][Full Text] [Related]
20. Characterising surface energy of pharmaceutical powders by inverse gas chromatography at finite dilution. Das SC; Stewart PJ J Pharm Pharmacol; 2012 Sep; 64(9):1337-48. PubMed ID: 22881445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]