BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 21846094)

  • 1. Cucurbit[8]uril rotaxanes.
    Ramalingam V; Urbach AR
    Org Lett; 2011 Sep; 13(18):4898-901. PubMed ID: 21846094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inclusion of carboxyl function inside of cucurbiturils and its use in molecular switches.
    Kolman V; Kulhanek P; Sindelar V
    Chem Asian J; 2010 Nov; 5(11):2386-92. PubMed ID: 20839273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A heterowheel [3]pseudorotaxane by integrating β-cyclodextrin and cucurbit[8]uril inclusion complexes.
    Ding ZJ; Zhang HY; Wang LH; Ding F; Liu Y
    Org Lett; 2011 Mar; 13(5):856-9. PubMed ID: 21268596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotaxane formation by cucurbit[7]uril in water and DMSO solutions.
    Senler S; Cheng B; Kaifer AE
    Org Lett; 2014 Nov; 16(22):5834-7. PubMed ID: 25383988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular shuttle based on inclusion complex between cucurbit[6]uril and bispyridinium ethylene.
    Kolman V; Khan MS; Babinský M; Marek R; Sindelar V
    Org Lett; 2011 Dec; 13(23):6148-51. PubMed ID: 22066799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cucurbit[7]uril host-guest complexes and [2]pseudorotaxanes with N-methylpiperidinium, N-methylpyrrolidinium, and N-methylmorpholinium cations in aqueous solution.
    Gamal-Eldin MA; Macartney DH
    Org Biomol Chem; 2013 Feb; 11(7):1234-41. PubMed ID: 23314170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. End-to-end distance determination in a cucurbit[6]uril-based rotaxane by PELDOR spectroscopy.
    Pievo R; Casati C; Franchi P; Mezzina E; Bennati M; Lucarini M
    Chemphyschem; 2012 Aug; 13(11):2659-61. PubMed ID: 22693109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-responsive movement of cucurbit[7]uril in a diblock polypseudorotaxane containing dimethyl beta-cyclodextrin and cucurbit[7]uril.
    Ooya T; Inoue D; Choi HS; Kobayashi Y; Loethen S; Thompson DH; Ko YH; Kim K; Yui N
    Org Lett; 2006 Jul; 8(15):3159-62. PubMed ID: 16836355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable DNA condensation through cucurbit[6]uril in 2D pseudopolyrotaxanes.
    Ke CF; Hou S; Zhang HY; Liu Y; Yang K; Feng XZ
    Chem Commun (Camb); 2007 Aug; (32):3374-6. PubMed ID: 18019503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multilayer films with nanocontainers: redox-controlled reversible encapsulation of guest molecules.
    Zhang J; Liu Y; Yuan B; Wang Z; Schönhoff M; Zhang X
    Chemistry; 2012 Nov; 18(47):14968-73. PubMed ID: 23112102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular vesicle: triggered by formation of pseudorotaxane between cucurbit[6]uril and surfactant.
    Zhou Q; Wang H; Gao T; Yu Y; Ling B; Mao L; Zhang H; Meng X; Zhou X
    Chem Commun (Camb); 2011 Oct; 47(40):11315-7. PubMed ID: 21927725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pillar[5]arene as a co-factor in templating rotaxane formation.
    Ke C; Strutt NL; Li H; Hou X; Hartlieb KJ; McGonigal PR; Ma Z; Iehl J; Stern CL; Cheng C; Zhu Z; Vermeulen NA; Meade TJ; Botros YY; Stoddart JF
    J Am Chem Soc; 2013 Nov; 135(45):17019-30. PubMed ID: 24059594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes.
    Angelos S; Yang YW; Patel K; Stoddart JF; Zink JI
    Angew Chem Int Ed Engl; 2008; 47(12):2222-6. PubMed ID: 18275057
    [No Abstract]   [Full Text] [Related]  

  • 14. Cucurbit[7]uril pseudorotaxane-based photoresponsive supramolecular nanovalve.
    Sun YL; Yang BJ; Zhang SX; Yang YW
    Chemistry; 2012 Jul; 18(30):9212-6. PubMed ID: 22718563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic vs thermodynamic self-sorting of cucurbit[6]uril, cucurbit[7]uril, and a spermine derivative.
    Masson E; Lu X; Ling X; Patchell DL
    Org Lett; 2009 Sep; 11(17):3798-801. PubMed ID: 19670907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-temperature phosphorescent γ-cyclodextrin-cucurbit[6]uril-cowheeled [4]rotaxanes for specific sensing of tryptophan.
    Yu X; Liang W; Huang Q; Wu W; Chruma JJ; Yang C
    Chem Commun (Camb); 2019 Mar; 55(21):3156-3159. PubMed ID: 30801096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guest exchange in a porous cucurbit[6]uril-based metal-organic rotaxane framework probed by NMR and X-ray crystallography.
    Wu XS; Wang XL; Zhu FL; Bao HF; Qin C; Su ZM
    Chem Commun (Camb); 2018 May; 54(43):5474-5477. PubMed ID: 29749420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Interfacial Adhesion through Cucurbit[n]uril Molecular Recognition.
    Liu J; Tan CSY; Scherman OA
    Angew Chem Int Ed Engl; 2018 Jul; 57(29):8854-8858. PubMed ID: 29663607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benzobis(imidazolium)-cucurbit[8]uril complexes for binding and sensing aromatic compounds in aqueous solution.
    Biedermann F; Rauwald U; Cziferszky M; Williams KA; Gann LD; Guo BY; Urbach AR; Bielawski CW; Scherman OA
    Chemistry; 2010 Dec; 16(46):13716-22. PubMed ID: 21058380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cucurbit[8]uril sponge.
    Ramalingam V; Kwee SK; Ryno LM; Urbach AR
    Org Biomol Chem; 2012 Nov; 10(43):8587-9. PubMed ID: 23042328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.