These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 21847162)

  • 1. Multimode interference devices for focusing in microfluidic channels.
    Hunt HC; Wilkinson JS
    Opt Lett; 2011 Aug; 36(16):3067-9. PubMed ID: 21847162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinoform microlenses for focusing into microfluidic channels.
    Hunt HC; Wilkinson JS
    Opt Express; 2012 Apr; 20(9):9442-57. PubMed ID: 22535034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array.
    Schonbrun E; Steinvurzel PE; Crozier KB
    Opt Express; 2011 Jan; 19(2):1385-94. PubMed ID: 21263680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microflow Cytometer for optical analysis of phytoplankton.
    Hashemi N; Erickson JS; Golden JP; Jackson KM; Ligler FS
    Biosens Bioelectron; 2011 Jul; 26(11):4263-9. PubMed ID: 21601442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput and high-resolution flow cytometry in molded microfluidic devices.
    Simonnet C; Groisman A
    Anal Chem; 2006 Aug; 78(16):5653-63. PubMed ID: 16906708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber-free coupling between bulk laser beams and on-chip polymer-based multimode waveguides.
    Jensen TG; Nielsen LB; Kutter JP
    Electrophoresis; 2011 May; 32(10):1224-32. PubMed ID: 21500210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microflow cytometer exploited for the immunological differentiation of leukocytes.
    Frankowski M; Bock N; Kummrow A; Schädel-Ebner S; Schmidt M; Tuchscheerer A; Neukammer J
    Cytometry A; 2011 Aug; 79(8):613-24. PubMed ID: 21618424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Counting of Escherichia coli by a microflow cytometer based on a photonic-microfluidic integrated device.
    Guo T; Wei Y; Xu C; Watts BR; Zhang Z; Fang Q; Zhang H; Selvaganapathy PR; Deen MJ
    Electrophoresis; 2015 Jan; 36(2):298-304. PubMed ID: 25348197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Microflow Cytometer Based on a Disposable Microfluidic Chip With Side Scatter and Fluorescence Detection Capability.
    Xun W; Feng J; Chang H
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):850-6. PubMed ID: 26415206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation.
    Lei T; Poon AW
    Opt Express; 2013 Jan; 21(2):1520-30. PubMed ID: 23389134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A photonic-microfluidic integrated device for reliable fluorescence detection and counting.
    Watts BR; Zhang Z; Xu CQ; Cao X; Lin M
    Electrophoresis; 2012 Nov; 33(21):3236-44. PubMed ID: 23065957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping.
    Applegate RW; Squier J; Vestad T; Oakey J; Marr DW; Bado P; Dugan MA; Said AA
    Lab Chip; 2006 Mar; 6(3):422-6. PubMed ID: 16511626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field-free, sheathless cell focusing in exponentially expanding hydrophoretic channels for microflow cytometry.
    Song S; Choi S
    Cytometry A; 2013 Nov; 83(11):1034-40. PubMed ID: 24115760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of microparticles in next-generation assays for microflow cytometers.
    Kim JS; Ligler FS
    Anal Bioanal Chem; 2010 Nov; 398(6):2373-82. PubMed ID: 20526882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.
    Zhu H; Ozcan A
    Methods Mol Biol; 2015; 1256():171-90. PubMed ID: 25626539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence excitation on monolithically integrated all-polymer chips.
    Schelb M; Vannahme C; Welle A; Lenhert S; Ross B; Mappes T
    J Biomed Opt; 2010; 15(4):041517. PubMed ID: 20799795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements of light scattering in an integrated microfluidic waveguide cytometer.
    Su XT; Singh K; Capjack C; Petrácek J; Backhouse C; Rozmus W
    J Biomed Opt; 2008; 13(2):024024. PubMed ID: 18465987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.