These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21847165)

  • 1. Scaling pseudo-Zernike expansion coefficients to different pupil sizes.
    Schwiegerling J
    Opt Lett; 2011 Aug; 36(16):3076-8. PubMed ID: 21847165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials.
    Rahbar K; Faez K; Attaran Kakhki E
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1988-93. PubMed ID: 24322854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical method for the transformation of Zernike polynomial coefficients for scaled, rotated, and translated pupils.
    Li L; Zhang B; Xu Y; Wang D
    Appl Opt; 2018 Dec; 57(34):F22-F30. PubMed ID: 30645277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthonormal polynomials in wavefront analysis: error analysis.
    Dai GM; Mahajan VN
    Appl Opt; 2008 Jul; 47(19):3433-45. PubMed ID: 18594590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts.
    Mahajan VN; Aftab M
    Appl Opt; 2010 Nov; 49(33):6489-501. PubMed ID: 21102675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orthonormal polynomials in wavefront analysis: analytical solution.
    Mahajan VN; Dai GM
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2994-3016. PubMed ID: 17767271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials.
    Zhao C; Burge JH
    Opt Express; 2007 Dec; 15(26):18014-24. PubMed ID: 19551099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials.
    Zhao C; Burge JH
    Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils.
    Mahajan VN
    Appl Opt; 2012 Jun; 51(18):4087-91. PubMed ID: 22722284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On a propagation-invariant, orthogonal modal expansion on the unit disk: going beyond Nijboer-Zernike theory of aberrations.
    El Gawhary O
    Opt Lett; 2015 Jun; 40(11):2626-9. PubMed ID: 26030574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils.
    Lundström L; Unsbo P
    J Opt Soc Am A Opt Image Sci Vis; 2007 Mar; 24(3):569-77. PubMed ID: 17301846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the eye aberration coefficients in resized pupils: is it better to refit or to rescale?
    Bará S; Pailos E; Arines J; López-Gil N; Thibos L
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jan; 31(1):114-23. PubMed ID: 24561946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double Zernike expansion of the optical aberration function from its power series expansion.
    Braat JJ; Janssen AJ
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jun; 30(6):1213-22. PubMed ID: 24323109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recursive formula to compute Zernike radial polynomials.
    Honarvar Shakibaei B; Paramesran R
    Opt Lett; 2013 Jul; 38(14):2487-9. PubMed ID: 23939089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validity of scaling zernike coefficients to a larger diameter for refractive surgery.
    Dai GM
    J Refract Surg; 2011 Nov; 27(11):837-41. PubMed ID: 22045575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zernike olivary polynomials for applications with olivary pupils.
    Zheng Y; Sun S; Li Y
    Appl Opt; 2016 Apr; 55(12):3116-25. PubMed ID: 27140076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials.
    Hou X; Wu F; Yang L; Chen Q
    Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extended Nijboer-Zernike approach to aberration and birefringence retrieval in a high-numerical-aperture optical system.
    Braat JJ; Dirksen P; Janssen AJ; van Haver S; van de Nes AS
    J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2635-50. PubMed ID: 16396023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decomposition of the total wave aberration in generalized optical systems.
    Oleszko M; Hambach R; Gross H
    J Opt Soc Am A Opt Image Sci Vis; 2017 Oct; 34(10):1856-1864. PubMed ID: 29036057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zernike monomials in wide field of view optical designs.
    Johnson TP; Sasian J
    Appl Opt; 2020 Aug; 59(22):G146-G153. PubMed ID: 32749327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.