These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21847165)

  • 21. Pupil scaling for the estimation of aberrations in natural pupils.
    Ommani A; Hutchings N; Thapa D; Lakshminarayanan V
    Optom Vis Sci; 2014 Oct; 91(10):1175-82. PubMed ID: 25148220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials.
    Janssen AJ
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1604-13. PubMed ID: 25121449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strehl ratio and amplitude-weighted generalized orthonormal Zernike-based polynomials.
    Mafusire C; Krüger TP
    Appl Opt; 2017 Mar; 56(8):2336-2345. PubMed ID: 28375280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of Zernike polynomials for efficient estimation of orthonormal aberration coefficients over variable noncircular pupils.
    Lee H
    Opt Lett; 2010 Jul; 35(13):2173-5. PubMed ID: 20596184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scaling Zernike expansion coefficients to different pupil sizes.
    Schwiegerling J
    J Opt Soc Am A Opt Image Sci Vis; 2002 Oct; 19(10):1937-45. PubMed ID: 12365613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zernike radial slope polynomials for wavefront reconstruction and refraction.
    Nam J; Thibos LN; Iskander DR
    J Opt Soc Am A Opt Image Sci Vis; 2009 Apr; 26(4):1035-48. PubMed ID: 19340280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. General method to derive the relationship between two sets of Zernike coefficients corresponding to different aperture sizes.
    Shu H; Luo L; Han G; Coatrieux JL
    J Opt Soc Am A Opt Image Sci Vis; 2006 Aug; 23(8):1960-6. PubMed ID: 16835654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture.
    Ye J; Gao Z; Wang S; Cheng J; Wang W; Sun W
    J Opt Soc Am A Opt Image Sci Vis; 2014 Oct; 31(10):2304-11. PubMed ID: 25401259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials.
    Mafusire C; Krüger TPJ
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):840-849. PubMed ID: 29877326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wave aberration of human eyes and new descriptors of image optical quality and visual performance.
    Lombardo M; Lombardo G
    J Cataract Refract Surg; 2010 Feb; 36(2):313-31. PubMed ID: 20152616
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vector polynomials for direct analysis of circular wavefront slope data.
    Mahajan VN; Acosta E
    J Opt Soc Am A Opt Image Sci Vis; 2017 Oct; 34(10):1908-1913. PubMed ID: 29036062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New separated polynomial solutions to the Zernike system on the unit disk and interbasis expansion.
    Pogosyan GS; Wolf KB; Yakhno A
    J Opt Soc Am A Opt Image Sci Vis; 2017 Oct; 34(10):1844-1848. PubMed ID: 29036055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Orthonormal vector polynomials in a unit circle, Part II : Completing the basis set.
    Zhao C; Burge JH
    Opt Express; 2008 Apr; 16(9):6586-91. PubMed ID: 18545361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Least-squares fitting of orthogonal polynomials to the wave-aberration function.
    Rayces JL
    Appl Opt; 1992 May; 31(13):2223-8. PubMed ID: 20720881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zernike coefficients from wavefront curvature data.
    Mahajan VN; Acosta E
    Appl Opt; 2020 Aug; 59(22):G120-G128. PubMed ID: 32749324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study of Zernike polynomials of an elliptical aperture obscured with an elliptical obscuration.
    Hasan SY; Shaker AS
    Appl Opt; 2012 Dec; 51(35):8490-7. PubMed ID: 23262546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zernike aberration coefficients transformed to and from Fourier series coefficients for wavefront representation.
    Dai GM
    Opt Lett; 2006 Feb; 31(4):501-3. PubMed ID: 16496900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zernike vs. Bessel circular functions in visual optics.
    Trevino JP; Gómez-Correa JE; Iskander DR; Chávez-Cerda S
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):394-402. PubMed ID: 23668897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Orthonormal polynomials for hexagonal pupils.
    Mahajan VN; Dai GM
    Opt Lett; 2006 Aug; 31(16):2462-4. PubMed ID: 16880856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Jacobi circle and annular polynomials: modal wavefront reconstruction from wavefront gradient.
    Sun W; Wang S; He X; Xu B
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jul; 35(7):1140-1148. PubMed ID: 30110306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.