These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 21847173)

  • 21. Accelerating superluminal laser focus generated by a long-focal-depth mirror with high numerical aperture.
    Fan Q; Wang Y; Miao Z; Yang Z; Fan W; Chen Y; Liu D; Zhang Q; Wei L; Zang H
    Opt Express; 2023 Jan; 31(3):4521-4536. PubMed ID: 36785418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of focusing of linearly polarized light.
    Khonina SN; Golub I
    Opt Lett; 2011 Feb; 36(3):352-4. PubMed ID: 21283187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures.
    Khonina SN; Volotovsky SG
    J Opt Soc Am A Opt Image Sci Vis; 2010 Oct; 27(10):2188-97. PubMed ID: 20922009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Subwavelength focusing using a hyperbolic medium with a single slit.
    Li G; Li J; Cheah KW
    Appl Opt; 2011 Nov; 50(31):G27-30. PubMed ID: 22086043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of DOE for generating a needle of a strong longitudinally polarized field.
    Huang K; Shi P; Kang XL; Zhang X; Li YP
    Opt Lett; 2010 Apr; 35(7):965-7. PubMed ID: 20364185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Focusing radially polarized light by a concentrically corrugated silver film without a hole.
    Wróbel P; Pniewski J; Antosiewicz TJ; Szoplik T
    Phys Rev Lett; 2009 May; 102(18):183902. PubMed ID: 19518872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic focusing in spiral nanostructures under linearly polarized illumination.
    Li J; Yang C; Zhao H; Lin F; Zhu X
    Opt Express; 2014 Jul; 22(14):16686-93. PubMed ID: 25090487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental research on the performance of a very-small-aperture laser.
    Hongfeng G; Wang J; Tian Q; Xia W; Xiangang X; Han S; Hao Z
    J Microsc; 2008 Mar; 229(Pt 3):496-502. PubMed ID: 18331501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resolution enhancing using cantilevered tip-on-aperture silicon probe in scanning near-field optical microscopy.
    Chang WS; Bauerdick S; Jeong MS
    Ultramicroscopy; 2008 Sep; 108(10):1070-5. PubMed ID: 18579310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Piezoresistor-equipped fluorescence-based cantilever probe for near-field scanning.
    Kan T; Matsumoto K; Shimoyama I
    Rev Sci Instrum; 2007 Aug; 78(8):083106. PubMed ID: 17764312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimation of wave fields of incident beams in a transmission electron microscope by using a small selected-area aperture.
    Morishita S; Yamasaki J; Tanaka N
    J Electron Microsc (Tokyo); 2011; 60(2):101-8. PubMed ID: 21320861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photonic nanojets generated using square-profile microsteps.
    Kotlyar VV; Stafeev SS; Feldman A
    Appl Opt; 2014 Aug; 53(24):5322-9. PubMed ID: 25321102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Optical properties of human normal small intestine tissue with theoretical model of optics about biological tissues at Ar+ laser and 532 nm laser and their linearly polarized laser irradiation in vitro].
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 May; 24(5):524-8. PubMed ID: 15769036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Super-focusing of center-covered engineered microsphere.
    Wu M; Chen R; Soh J; Shen Y; Jiao L; Wu J; Chen X; Ji R; Hong M
    Sci Rep; 2016 Aug; 6():31637. PubMed ID: 27528093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Considerations on a laser-scanning-microscope with high resolution and depth of field.
    Cremer C; Cremer T
    Microsc Acta; 1978 Sep; 81(1):31-44. PubMed ID: 713859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Focusing and imaging in microsphere-based microscopy.
    Hoang TX; Duan Y; Chen X; Barbastathis G
    Opt Express; 2015 May; 23(9):12337-53. PubMed ID: 25969319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional nanoscale far-field focusing of radially polarized light by scattering the SPPs with an annular groove.
    Zhang M; Du J; Shi H; Yin S; Xia L; Jia B; Gu M; Du C
    Opt Express; 2010 Jul; 18(14):14664-70. PubMed ID: 20639952
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gold-bead scanning near-field optical microscope with laser-force position control.
    Sugiura T; Okada T; Inouye Y; Nakamura O; Kawata S
    Opt Lett; 1997 Nov; 22(22):1663-5. PubMed ID: 18188327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies on design of 351  nm focal plane diagnostic system prototype and focusing characteristic of SGII-upgraded facility at half achievable energy performance.
    Liu C; Ji L; Yang L; Zhao D; Zhang Y; Liu D; Zhu B; Lin Z
    Appl Opt; 2016 Apr; 55(10):2800-12. PubMed ID: 27139687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Composite dielectric metasurfaces for phase control of vector field.
    Kim SW; Yee KJ; Abashin M; Pang L; Fainman Y
    Opt Lett; 2015 Jun; 40(11):2453-6. PubMed ID: 26030530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.