These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21847181)

  • 1. Fourier-transform, integrated-optic spatial heterodyne spectrometer on a silica-based planar waveguide with 1 GHz resolution.
    Fontaine NK; Okamoto K; Su T; Yoo SJ
    Opt Lett; 2011 Aug; 36(16):3124-6. PubMed ID: 21847181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction for phase-shift deviation in a complex Fourier-transform integrated-optic spatial heterodyne spectrometer with an active phase-shift scheme.
    Takada K; Aoyagi H; Okamoto K
    Opt Lett; 2011 Apr; 36(7):1044-6. PubMed ID: 21478977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Fourier-transform, integrated-optic spatial heterodyne spectrometer on silica-based planar waveguide.
    Okamoto K; Aoyagi H; Takada K
    Opt Lett; 2010 Jun; 35(12):2103-5. PubMed ID: 20548400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of a silica-based complex Fourier-transform integrated-optic spatial heterodyne spectrometer incorporating 120° optical hybrid couplers.
    Uda R; Yamaguchi K; Takada K; Okamoto K
    Appl Opt; 2018 May; 57(14):3781-3787. PubMed ID: 29791341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers.
    Florjańczyk M; Cheben P; Janz S; Scott A; Solheim B; Xu DX
    Opt Express; 2007 Dec; 15(26):18176-89. PubMed ID: 19551116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectroscopy using a spatial heterodyne spectrometer: proof of concept.
    Gomer NR; Gordon CM; Lucey P; Sharma SK; Carter JC; Angel SM
    Appl Spectrosc; 2011 Aug; 65(8):849-57. PubMed ID: 21819774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Data processing for interferogram of spatial heterodyne spectrometer].
    Ye S; Xiong W; Qiao YL; Hong J; Fang YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):848-52. PubMed ID: 19455841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependence mitigation in stationary Fourier-transform on-chip spectrometers.
    Herrero-Bermello A; Velasco AV; Podmore H; Cheben P; Schmid JH; Janz S; Calvo ML; Xu DX; Scott A; Corredera P
    Opt Lett; 2017 Jun; 42(11):2239-2242. PubMed ID: 28569891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detailed calculation of spectral noise caused by measurement errors of Mach-Zehnder interferometer optical path phases in a spatial heterodyne spectrometer with a phase shift scheme.
    Takada K; Seino M; Chiba A; Okamoto K
    Appl Opt; 2013 Apr; 52(12):2555-63. PubMed ID: 23669661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of a compressive-sensing Fourier-transform on-chip spectrometer.
    Podmore H; Scott A; Cheben P; Velasco AV; Schmid JH; Vachon M; Lee R
    Opt Lett; 2017 Apr; 42(7):1440-1443. PubMed ID: 28362792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Optical-fiber Fourier transform spectrometer].
    Liu Y; Li BS; Liu Y; Zhai YF; Wang A
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Oct; 26(10):1951-4. PubMed ID: 17205761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip polarization-insensitive Fourier transform spectrometer.
    Wang H; Li Q; Shi W
    Opt Lett; 2020 Mar; 45(6):1479-1482. PubMed ID: 32163996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip interrogator based on Fourier transform spectroscopy.
    Peternella FG; Esselink T; Dorsman B; Harmsma P; Horsten RC; Zuidwijk T; Urbach HP; Adam ALC
    Opt Express; 2019 May; 27(11):15456-15473. PubMed ID: 31163742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Monolithic Spatial Heterodyne Raman Spectrometer: Initial Tests.
    Waldron A; Allen A; Colón A; Carter JC; Angel SM
    Appl Spectrosc; 2021 Jan; 75(1):57-69. PubMed ID: 32495633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides.
    Velasco AV; Cheben P; Bock PJ; Delâge A; Schmid JH; Lapointe J; Janz S; Calvo ML; Xu DX; Florjańczyk M; Vachon M
    Opt Lett; 2013 Mar; 38(5):706-8. PubMed ID: 23455272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research on key technologies of all fiber optic Fourier transform spectrometer].
    Wang A; Zhu L; Zhang L; Liu Y; Zhu Z; Li ZG; Wu JD; Fan YP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jul; 29(7):1777-80. PubMed ID: 19798938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New measurement system for fault location in optical waveguide devices based on an interferometric technique.
    Takada K; Yokohama I; Chida K; Noda J
    Appl Opt; 1987 May; 26(9):1603-6. PubMed ID: 20454375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and evaluation of a pulsed-jet chirped-pulse millimeter-wave spectrometer for the 70-102 GHz region.
    Park GB; Steeves AH; Kuyanov-Prozument K; Neill JL; Field RW
    J Chem Phys; 2011 Jul; 135(2):024202. PubMed ID: 21766933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne.
    Zhang S; Wang H; Zou X; Zhang Y; Lu R; Liu Y
    Opt Lett; 2015 Jun; 40(12):2854-7. PubMed ID: 26076279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mid-infrared Fourier-transform spectrometer based on metamaterial lateral cladding suspended silicon waveguides.
    Duong Dinh TT; Le Roux X; Koompai N; Melati D; Montesinos-Ballester M; González-Andrade D; Cheben P; Velasco AV; Cassan E; Marris-Morini D; Vivien L; Alonso-Ramos C
    Opt Lett; 2022 Feb; 47(4):810-813. PubMed ID: 35167531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.